Precision Hub 模拟精密技术杂谈

Precision Hub 模拟精密技术杂谈
  • 数学原理:如何将ADC代码转换为电压(第2篇)

    • 0 所有评论
    在 本系列的第1篇文章 中,我解释了如何通过使用公式1将ADC的输出代码乘以最低有效位(LSB)大小来计算模数转换器(ADC)的输入电压: 为计算ADC的LSB大小,我们使用公式2: 现在,您已经知道如何从输出代码中计算输入电压,我们来看几个常见的应用示例,它们使用Δ-ΣADC来显示如何从测量电压计算相关的物理参数。通过每个示例,我提供了相关TI Designs参考设计的链接,您可以在其中获得额外的设计帮助。 电流分流测量 ADC测量电压...
  • 数学原理:如何将 ADC 代码转换为电压(第1篇)

    • 0 所有评论
    许多初步了解 模数转换器 (ADC)的人想知道如何将ADC代码转换为电压。或者,他们的问题是针对特定应用,例如:如何将ADC代码转换回物理量,如电流、温度、重量或压力。在这个包含两篇文章的博客系列中,我将讨论如何为各种应用执行这一数学转换。在第1篇文章中,我将解释如何将ADC代码转换回相应的电压。在第2篇文章中,我将使用几个应用示例来展示如何从测量的电压计算感兴趣的物理参数。 将代码转换为电压 ADC采样模拟信号提供表示输入信号的量化数字码。数字输出代码得到后处理,并且结果可以报告给使用该信息做出决定和采取行动的操作者...
  • 新的集成DAC如何提高效率并减少模拟量输出模块中的电路板空间

    • 0 所有评论
    工业4.0已经彻底改变了制造业,改变了工厂的设计和实施方式。在工厂自动化和过程控制应用中,Industry 4.0的影响归结为两个基本概念:分散式系统和智能确定性系统的扩散。分散式系统固有地需要进行模块化设置,并具灵活性。高效、低功耗和热优化的设计是这些系统的关键推动因素。智能确定性系统是可以早期检测故障并提高可靠性的模块。 在 工厂自动化和过程控制应用 中,数模转换器(DAC)通常在用于可编程逻辑控制器(PLC)和传感器发射器的模拟输出中被发现。这两种情况下, DAC 都可用于传送电压输出或电流输出...
  • 多路复用器:并非那么简单

    • 0 所有评论
    将多路复用器(或简称mux)设计成信号链很简单,对吗?毕竟,设备只需将多个信号放入数据转换器。 实际上,复用器可以各种方式显著影响信号链的性能。例如,导通电容可能导致通道之间的串扰。导通电阻的信号和温度相关变化可能导致信号失真。多路复用器的电容和电阻一起可限制信号带宽。当多路复用器切换通道并影响输出处的稳定时间时,电荷注入可能引起瞬态误差。 为了优化信号链性能,理解这些示例及多路复用器可影响信号的许多其他方式很重要,特别是因为多路复用器针对不同的性能特性及不同的应用而被优化。图1所示为包含复用器的示例电路...
  • Δ-Σ模数转换器基础知识: 了解 Δ-Σ 调制器

    • 0 所有评论
    Δ-Σ ADC由Δ-Σ调制器和数字滤波器构成。调制器将模拟输入转换为数字比特流,而数字滤波器将比特流转换为表示模拟输入幅度的数据字。 让我们来看看调制器是如何工作的,首先从一阶Δ-Σ调制器拓扑结构的基本分析开始,如图1所示。 图 1 : Δ-Σ 调制器内部框图 调制器根据调制器时钟运行,决定了输入的采样间隔...