最新技术文章
  • 电源管理: 访问电源参考设计库的众多理由

    作者:Tim Goodrow  德州仪器

     

    在进入TI以来,我花了无数时间帮助世界各地的客户采用 TI 电源产品进行设计。一般来说,客户将了解工作条件情况以及电源需要达到什么样的性能水平,了解尺寸、效率、频率、组件数量、成本以及特性。

    优化电路解决方案并保持高可靠性是良好电源设计需要的。我们的电源设计服务团队经常与客户合作,一起设计和构建电源参考设计,帮助他们实现激进的设计目标。

    例如,你能否将 10W 充电器做成一英寸方块,能否以低成本实现不足 30mW 的待机模式功耗!?

    是的,我们可以,而且已经做到了。请看一下 PMP8286。一个冰块外形的内部是 AC 至 USB 充电器。

    电源设计服务团队和我已经创建了数千个类似于 PMP8286 的电源参考设计,而且都构建成功并通过了测试。

    去年,我们创建了免费使用的 Power Lab 工具,PowerLab 是一个电源参考设计库,包含简单易用的搜索工具,可帮助您根据输入…

  • 电源管理: 消除 AC 驱动器的 8 个常见误区

    作者:Joe DeNicholas  德州仪器

     

    实现相位可调光低纹波 LED 驱动器的最低成本方法是什么?不是开关稳压器,而是支持动态负载的线性稳压器。这里有一些与使用线性离线 LED 驱动器解决方案有关的最常见问题。

    TPS92411 功能方框图

     

    1. 为什么照明设计人员要使用电解质电容器?没有那种元件能以电解质电容器的价位提供相应的大容量存储。如果在制造和装配过程中经过精心挑选、采购和处理,它们可能会非常可靠。事实上,认为电解质电容器是 LED 驱动器系统中可靠性最差的元件的这种观点是错误的,因为有四至六种其它元件比电解质电容器更容易引起稳定性问题。电解质电容器的使用寿命终结时间通常定义为在电容降低 50% 或等效串联电阻 (ESR) 提高一倍的时候,(ESR 的翻倍在这里几乎没什么影响,但电容器的使用寿命接近终结时间,因此它可能不会提升 1 倍)。电解质产品的大多数问题在于低成本反激式电源(例如低成本的 PC…

  • 电源管理: 简单电路可产生快速可控的瞬态负载

    作者: Ryan Manack

    许多应用处理器均需要现场可编程门阵列(FPGA)、专用集成电路(ASIC)和其它大功率中央处理器(CPU)等负载的电流快速变化。这些系统的电源要求特别注意控制拓扑结构选择和输出滤波器设计,以支持快速电流阶跃。一旦设计完成,关键的挑战就是测试电源与规定的电流阶跃和转换速率。在本文中,我们举例说明了一个简单电路,可进行超过300安培/微秒(A/us)的电流转换。

    用电子负载测试电源的瞬态响应很常见。对许多系统轨(如服务器的3.3V或5V总线)而言,电子负载很容易配置为在2-10A/us的范围内汲入电流的模式。但是,内核电压可能需要转换速率比这些水平高两个数量级。高转换速率测试中的一个主要限制因素是负载路径中的寄生电感。要以300A/us的速率为0.9V输出转换15A的电流,公式1计算出的最高电感是3nH。作为参考,成圈状通过电流探头的16级导线的1英寸片可将20nH的电感添加到负载路径中。很明显,需要另一种电流汲入方法…

  • 电源管理: 同步您的单端初级电感转换器(SEPIC)

    Other Parts Discussed in Post: LM5122, PMP10886

    作者:John Betten

    单端初级电感转换器(SEPIC)在降低或升高输入电压以维持稳定的输出电压方面功不可没。这在汽车应用或可能提供多个输入源的系统中非常有用,但您不一定要更改转换器类型。SEPIC具有许多优势(如极小的有源部件),并且只需要一个低成本的升压型或反激式控制器。但像所有的拓扑结构一样,它在某些性能方面也可能收效不佳。其中的一个不足之处就是二极管整流导致的受限最大输出电流。让我们来看看如何同步输出才能对此有帮助。

    图1展示了一个基本的SEPIC电路,图2则详细说明了对应的关键电压和电流波形。当Q2打开时,它导通的电流量是流经L1每个绕组的电流总和。这个总和等于输入电流加上输出电流,且在满载且输入电压最小时达到其最大值。当Q2关闭时,这两种电流通过D1改道至输出电容器和负载。当Q2关闭后电流只能在D1内流动,因为当Q2打开时D1是反向偏置的…

  • 模拟: TWS蓝牙耳机介绍及TI低功耗方案

    Other Parts Discussed in Post: SN74LVC1G74, TPS61099, TIDA-050007

    作者:Wiky Liao

    TWS(True Wireless Stereo, 真无线立体声)蓝牙耳机是近年来异常火热的音频产品。它借助蓝牙芯片,先将手机与主耳机建立无线连接,再建立起主耳机和副耳机的无线通讯,从而完全摒弃了传统耳机间的线材连接,极大地方便了用户的使用。另外,主耳机是可以单独使用的,完全能够胜任现有市场上的单颗蓝牙耳机的应用需求,使用功能非常强大。因此自从2016年9月苹果发布第一款TWS耳机——Airpods以来,市场反响就非常热烈,后续音频厂商见此迅速跟进,扎堆布局TWS蓝牙耳机,使TWS耳机市场异彩纷呈。接下來Bluetooth 5 将带来更精彩的使用者体验,新的充电盒设计会让消费者更为方便。

    轻巧且便于携带是TWS耳机最为重要的设计目标,受限于充电盒和耳机的狭小空间…

  • 电源管理: 全新的高级WEBENCH® 工具使专家级电源设计人员如虎添翼

        作为WEBENCH® 设计开发团队的长期成员和之前的产品线应用工程师,在为新入行工程师和设计时间紧迫的工程师们提供电源设计工具方面,我已经有很多年的工作经验了。我们的目标始终是为设计人员提供那些能够自动操作耗时任务的工具,并且帮助你的产品更早上市。虽然我认为我们确实为刚刚崭露头角的工程师们提供了一款非常有价值的工具,但是我们也认识到,有一大批设计界的朋友是电源设计方面的专家,他们不需要入门级的工具,而非常需要对设计有更多的掌控,并且能够从同一款自动化工具中受益。我们刚刚推出的全新WEBENCH高级工具是目前为止最有挑战性的一项开发任务,不过现在的WEBENCH Power Designer(电源设计工具)为专家级设计人员提供更多的高级设计控制,以及仿真导出功能,这个功能甚至可以将最复杂的设计导入到你的CAD工具中。

        高级选项使你能够根据设计需要找到专门的解决方案,并对其进行控制。借助WEBENCH Power Designer所支持的超过1500款电源模块和LDO…

  • 汽车: 你的车上有多少电动机?

    关于汽车中的电动机应用,英国和法国已经制定了禁止内燃机(ICE)的限期,中国也在研究何时禁止内燃机车。沃尔沃已经宣布其新车将于2019年开始使用电动驱动。

    本文将讨论强大的电动机,也就是牵引马达。它将在发动机推动车辆方面发挥日益重要的作用。但电动马达已经在许多其他汽车应用中占据主导地位。我们不妨来进行一个汽车的典型电机普查。

    1:汽车中的电动机应用

     

    现有的-和正在增加-的电机设备

    “必须得有比手摇起动更好的方式来起动汽车”,至少你的曾祖父母是这么认为的。电动起动马达已经成为汽车的一部分。这些仍然是除牵引电机以外最强大的电动机。随着怠速停止技术和轻度混合动力汽车的出现,起动电机正在转变成启动发电机,并承担更多功能。在某些设计中,增强型起动马达可用于在停车后行驶中“爬行”,使起动马达和电动牵引马达之间的分界变得模糊。

    挡风玻璃刮水器也许是现有汽车中最普遍的电动机应用的例子。每辆车至少有一个用于前雨刮器的雨刷电机…

  • 嵌入式处理: CC1310片内固件升级的工程编译

    Other Parts Discussed in Post: CC1310, UNIFLASH

    作者: TI 工程师 LOUIS LU

     

    OAD(http://www.ti.com/cn/lit/swra580 ), 即Over the Air Download,是通过无线的方式远程更新固件的一种方法。On chip,就是片上, 升级的对象不需要外挂Flash, 通过芯片片内Flash完成新固件存储及老固件向新固件的切换。On chip OAD方案因为不需要外部接口就能够实现固件的更新,在传感器,智能门锁,电力监控等无线应用广受欢迎。

    在TI新发布的CC1310 片内OAD工程里, 由于很多细节没有说明, 用户使用过程可能出错. 这里将结合TI CC1310 SDK 1.60.00.21 版本(http://www.ti.com.cn/tool/cn/simplelink-cc13x0-sdk), 讲解在工程编译和OAD测试过程中的注意事项…

  • 电源管理: 参考设计到底都包含了些什么?

    作者:Robert Taylor1

    我有一个 10 个月大的女儿。许多有小孩的人都知道,有孩子的人睡觉安排有点麻烦。有时候我发现自己到深夜了还在看电视购物广告。我看的内容已经非常多了,甚至都能准确预测下面将要发生的事。我最喜欢的内容包括:“请稍等!还不止这些!”以及“如果现在拨打电话,我们将双倍奉送!”我没买过任何东西(除非几个月后我在商店里看到了),但是这些主意非常好,而且通常很有娱乐性。

    PowerLab 笔记推出已有大概六个月了,而 PowerLab 本身已超过一年,但我还没有介绍过典型 PowerLab 设计具体包含什么内容,也没有解释过其中原由。我想现在应该说明一下,而且用电视购物广告的方式。也许您会受到极大诱惑而想尝试一下,“毕竟这是免费的!”

    PowerLab 中包含的每个设计首先都有一套来自真实应用的性能规范。这些性能规范由为系统寻找合适电源解决方案的工程师提供…

  • 模拟: 有效降低传导辐射干扰的小技巧

      

    作者:TI 工程师 Vental Mao

    一直以来,设计中的电磁干扰(EMI)问题十分令人头疼,尤其是在汽车领域。为了尽可能的减小电磁干扰,设计人员通常会在设计原理图和绘制布局时,通过降低高di / dt的环路面积以及开关转换速率来减小噪声源。

    但是,有时无论布局和原理图的设计多么谨慎,仍然无法将传导EMI降低到所需的水平。这是因为噪声不仅取决于电路寄生参数,还与电流强度有关。另外,开关打开和关闭的动作会产生不连续的电流,这些不连续电流会在输入电容上产生电压纹波,从而增加EMI。

    因此,有必要采用一些其他方法来提高传导EMI的性能。本文主要讨论的是引入输入滤波器来滤除噪声,或增加屏蔽罩来锁住噪声。

    图1 EMI滤波器示意简图

    图1是一个简化的EMI滤波器,包括共模(CM)滤波器和差模(DM)滤波器。 通常,DM滤波器主要用于滤除小于30MHz的噪声(DM噪声),CM滤波器主要用于滤除30MHz至100MHz的噪声(CM噪声…

  • 电源管理: 汽车新热点: T-BOX系统解决方案深度剖析之电源轨

    远程信息处理控制单元TCUT-BOX)是一种嵌入式车载系统,可应用于车辆的无线跟踪与通信等领域。该系统可分为电源轨、充电管理、接口、紧急呼叫单元、无线连接单元、天线等模块。其系统划分如下:

    在本系列的文章中会依次对以下主要模块进行详细介绍:

           第一节:电源轨;

           第二节:充放电管理

           第三节:接口

           第四节:紧急呼叫单元

           第五节:无线连接单元

    第一节 电源轨

     

    第一节先对电源轨展开介绍。

    T-BOX电源模块可分为电源轨以及充电管理两个部分。电源轨主要是分析T-BOX的一级电源、二级电源以及估算总体的功率情况;而充电管理主要是针对备用电池。下图为VBAT、备用电池、电源管理以及负载之间的关系。正常情况下,VBAT为负载供电的同时也会为电池充电;当遇到突发状况时(如撞车),VBAT失效,此时由备用电池为负载供电。

    1)    一级电源

    目前主流的方案有三种,分为只降压既升压又降压,以及先降压后升压

    方案一:只降压

  • 嵌入式处理: 毫米波传感器如何为独立的“辅助”生活创造技术优势

    Other Parts Discussed in Post: IWR6843AOP

    随着医学和医疗保健的进步,人类的平均预期寿命不断增加。世界上几乎每个国家/地区的老年人口规模和比例都在增长,65岁及以上的人口总数预计到2050年将翻一番,达到15亿。与此同时,为了应对这一老龄化发展趋势,必须扩大居家照护或护理设施的规模。

    疾病控制与预防中心的数据显示,每年有近25%的老年人跌倒,老年人跌倒是美国创伤性入院的主要原因。了解跌倒或其他与健康相关的事件何时发生,并能够快速做出反应,有助于确保患者得到所需的护理。

    当前技术家庭健康

    医用传感器以及连接技术的创新正帮助老年人在家中过上正常的生活,并确保在发生意外时能够及时提供帮助。这些医用传感器通常基于加速计来检测跌倒等运动特征,并可自动呼叫家人或护理人员寻求帮助。

    老年人必须在脖子或手腕上佩戴这些由电池供电的传感器;将他们佩戴在身体上有助于传感器识别诸如跌倒等宏观运动,并使用连接节点联系家人或护理人员…

  • 电源管理: 您的电源是不是智能化程度高到炫酷?

    Other Parts Discussed in Post: UCD7138, UCD3138A

    作者:Brent McDonald


    是的,我知道这个题目实在有些老土,但我想如果您赏光一览,您真的会喜欢这篇文章。



    我们都不止一次听说过智能电源将给电源行业带来的伟大变革。在许多方面,它已达到或超过了我们的预期;但在其它方面,它也让我们感到一丝丝失望。我禁不住想某些这样的情况源于这样一个事实:炫酷技术很容易让人迷恋,只因为它与众不同或充满新意;然而我们却忽略了它并没做真正伟大的事情这一事实。换句话说,我们有些人可能会觉得智能电源很棒,但我们不知道要用它做什么才能彰显它的魅力。

    我想列举一种借助数字电源的智能性实现的新技术。我想您会发现它非常棒又非常有用。实质上,这是一种全新的同步整流方案,可提高逻辑链路控制(LLC)变换器的效率、增加其稳健性和设计简易性。

    现在请稍等。在您闭上眼睛打瞌睡之前,继续听下去。马上就讲超酷的东西。我保证…

  • 电源管理: 如何用 DCAP 调节器测量波特图

    Other Parts Discussed in Post: PMP8824, TPS53319, TPS53318, TPS53355

    作者:Melinda Xie

    控制环路增益可在波特图(Bode Plot)中标绘,是一个能够较好评估系统稳定性的指标。控制环路带宽还可直接影响瞬态响应性能。

    DCAP™或DCAP2™/DCAP3™调节器(在这次讨论中笔者将称之为DCAPx)因其简单性而流行。当涉及到控制环路增益的测量时,DCAPx给工程师带来了挑战。通过从反馈电阻器分压器的顶部切断环路(如图1所示),很容易测量波特图。这适合传统控制架构,因为传统架构只有一条输出反馈路径,且反馈在脉宽调制(PWM)之前经过补偿器。


    图1:传统控制环路增益设置

    与传统电压模式或电流模式控制架构不同的是,DCAPx控制系统拥有两条直接输出反馈路径:一条通过反馈电阻器分压器网络,另一条则通过直流电阻…

  • 电源管理: 电源技巧:如何在隔离式电源中测量频率响应

    Other Parts Discussed in Post: TL431, PMP9203, PMP9204, PMP9720

    作者:Brian King


    您在补偿隔离式电源的反馈回路时是不是感到无从下手呢?在您进行测量时,回路的断开位置将直接影响到这项工作的难度。


    在选择TL431电路周围的补偿组件时,在一个特定的位置断开回路十分关键。我们可以选择在两个位置断开回路。


    大多数工程师喜欢在图1显示的反馈电阻分压器的位置上断开回路。毕竟,我们在非隔离式降压电路中是这么做的。当我们在这款隔离式电源中也进行同样操作的话,内部回路会变成发电厂设备的一部分,并且使得方程式和设计过程变得复杂。当我们在分压器上断开回路时,我们必须:

    1. 检查内部开回路的稳定性。
    2. 然后,我们必须查看这个内部回路的闭环响应。闭合内部回路是发电厂设备,它由外部回路控制。
    3. 通过选择外部回路内的TL431周围的补偿组件来确保稳定性。

    图1.在反馈分压器的位置上断开回路会使测量过程复杂化…

  • 模拟: 使用运算放大器来驱动高精度模数转换器

    Other Parts Discussed in Post: ADS8342

    作者:Rick Downs,德州仪器 (TI) 高精度模拟应用工程经理

     

    大多数高精度模数转换器 (ADC) 都没有高阻抗输入。输入信号直接通过一个开关连接到一个采样电容器。这种负载存在一些有趣的挑战。

     

    有人试图通过直接连接一个电位计到输入来验证其 ADC 的运行,如 1 所示。这样做的结果通常让人失望,因为获得的结果并不理想。这种情况下,在 ADC 输入上看到的信号呈现出巨大的峰值,因为大输入阻抗从采样电容器吸取电流,从而导致对电容器充电需要大量的电流。如果在转换器的采集时间 tACQ 内稳定下来,便不会出现问题。但是,如果没有在 tACQ 内稳定到 0.5 最低有效位 (LSB) 以下,则会损耗精度。

     

     

    1 高源阻抗会引起精度损耗

     

    2 显示了驱动一个高精度 ADC 的建议电路。CSH 为 ADC 内部的采样电容,而…

  • 嵌入式处理: Wi-Fi 6®︎ 鲜为人知的功能如何帮助您放心连接物联网设备

    Other Parts Discussed in Post: CC3301

    从简单的家用血压监测仪到公司的设备网络和整个公用事业电网,Wi-Fi® 在当今许多领域中的应用越来越广泛,甚至是备受期待。通过使用 Wi-Fi,房主可以安全可靠地控制智能烤箱、电动汽车充电站或洒水系统,从而节约时间和能源。楼宇管理员能够实现远程照明和空调系统,以此来节约资源、提高舒适度和减少开支。电网运营商可以通过无线方式检测并解决与维护、电能分配和安全相关的问题。

    过去,Wi-Fi 以可控的成本满足性能需求;它无处不在、可互操作且为人们所熟知。举例来说,Wi-Fi 基础设施在许多领域都比较常见,因而产品设计人员无需担心桥接器和适配器的创建问题(在创建桥接器和适配器后,才能将他们的产品连接到互联网)。Wi-Fi 的另一项优势是技术提供商构成的广泛生态系统,他们不断改进电气与电子工程师协会 (IEEE) 802.11 标准,随后与 Wi-Fi 联盟

  • 模拟: “实时控制”介绍及其重要性

    消费者每天都会与各种各样的系统打交道,这些系统根据外界条件进行相应动作。以汽车为例,当您踩下油门之后,汽车几乎瞬间加速,也就是说,踩完踏板即实现加速,这之间没有明显延迟。

    从汽车示例引出文章主题,我们假设汽车是一个系统,外界条件(司机)踩下油门即增加车速,则系统实现了所谓的“实时控制”。实时控制是闭环系统在定义的时间窗口内收集数据、处理数据并更新系统的能力。如果系统错过定义的时间窗口,其稳定性、精度和效率都会降低。控制能力下降可能会影响系统性能;例如,不能达到所需速度,甚至过热。本文将介绍实时控制系统的功能块,并以机器人应用为例进行说明。

    系统组件之间的通信尽管不必参与系统控制,但也应与主控制环路共同发挥作用。实时控制涉及的主要功能块包括检测(收集数据)、控制(解释并使用数据)和驱动(更新系统)(见图1)。

     1:实时控制环路的主要功能块

    下面详细介绍这些部分。

    • 检测是指测量电压、电流、电机转速或温度等外部因素…
  • 汽车: 电动汽车中具有电压和电流同步功能的智能接线盒

    随着电动汽车(EV)日益流行,消除驾驶员“里程焦虑”的同时让汽车更加经济实惠成为汽车制造商面临的挑战。这意味着需要降低电池组成本并提高其能量密度。电池中存储和消耗的每瓦时能量都对延长行驶里程至关重要。

    要对系统中每节电池的充电状态或运行状况状态进行更加精确的估算,非常重要的一点是对电压、温度和电流进行准确测量。

    电池管理系统(BMS)的主要功能是监测电池电压、电池组电压和电池组电流。图1a中的绿框显示的是由多个电池堆叠的电池组。电池监控单元包含多个检测电池电压和温度的电池监控器。

    1:传统的BMS架构(a);具有智能电池接线盒(BJB)BMS架构(b)

    在图1a中,可以看到电池管理单元(BMU)。BMU通常包含一个微控制器(MCU),用来管理电池组中的所有功能。灰色框中是BJB。它是具有大尺寸接触器的继电器箱或开关箱,用于将整个电池组连接到负载逆变器、电机甚至充电器。

    图1a显示的是传统BMS。在此配置中…

  • 工业: 探索高压输电 - 第1部分,电网换相换流器

    据美国能源信息管理局统计,2014年美国能源的平均零售价格为10.44美分/千瓦时,预计输配电损耗为5%。这一损耗值似乎很低,但是你必须考虑到美国的总净发电功率是4.1万亿兆瓦时。在这种情况下,5%的损耗意味着超过2000亿千瓦时和210亿美元的损失,因此努力改善电力传输方式成为了我们的优先事项。

     

    高压直流(HVDC)输电是为减少输配电损耗而实施的解决方案之一。为什么HVDC比常规交流输电更高效呢?HVDC输电线路的损耗比相同电压的AC线路少30-50%。当电压和电流变得异相时,HVDC可以提高功率因数。因为DC没有与其相关的频率,所以它不受集肤效应的影响,可以降低通过线路传输的总功率。当电流密度集中在表面或“外肤位置”时,会发生集肤效应,并且当其朝导体中心移动时会渐渐稀疏。沿表面的电流密度越高,AC的有效电阻也就越高。HVDC还提高了网络的可靠性。某些类型的HVDC站可以帮助稳定异步网络。…

  • 模拟: 如何设计高性能低侧电流感应设计中的印刷电路板

    Other Parts Discussed in Post: TLV9061

    在之前的博客文章中,我向大家介绍了如何借助低侧电流感应控制电机,并分享了为成本敏感型应用设计低侧电流感应电路的三个步骤。在本篇文章中,我将介绍如何使用应用印刷电路板(PCB)技术,采用一款微型运算放大器 (Op amp)来设计精确的、低成本的低侧电流感应电路。

    图1是之前的博客文章引用的低侧电流感应电路原理图,图一中使用的是TLV9061超小型运算放大器。

     

    图1:低侧电流感应原理图

     

    公式1是计算图1所示电路的传递函数:

    其中。

    精确的低侧电流感应设计对印刷电路板的设计有两大要求。首先要确保分流电阻(Rshunt)直接连接到放大器的同相输入端和RG的接地端,这通常被称为“开尔文接法”(Kelvin connection)。如果不使用开尔文接法,会产生与分流电阻(Rshunt)串联的寄生电阻,导致系统产生增益误差。图2显示了系统中寄生电阻的位置。…

  • 嵌入式处理: 紧凑,精确,互联。在工厂自动化、楼宇自动化和电网自动化领域应用智能边缘计算来提高生产力

    Other Parts Discussed in Post: AM6442, AM6441, AM6421, AM6412, AM6411

    目前世界人口已经达到了78亿,并且还在不断增加,预计到2050年将达到100亿。日益增长的人口既有对衣服,食物等基本必需品的需求,对舒适、安全生活的追求也不断增长。被广泛应用于智能制造、智能楼宇和智能电网领域的工业4.0技术以及即将推出的工业5.0创新技术,都是可以满足上述需求的现代自动化技术。

    工业4.0云架构中使用的高性能多核处理引擎可以从数千个边缘传感器中收集数据并执行复杂的分析,从而管理工厂运营。随着端到端自动化的发展,传感器数量和需要管理的数据也相应地呈指数级增长。一个智能工厂可能拥有超过50,000个传感器,每天产生几千万亿字节的数据;即使是普通的办公大楼也可能产生数百GB的数据。

    据国际数据公司(IDC)估计,到2022年,将有40%的数据被存储、管理、分析并留存在产生位置(也称为…

  • 嵌入式处理: 如何在xWR1xxx芯片上运行mmw demo

    Other Parts Discussed in Post: UNIFLASH, IWR1642

    作者:TI 工程师 Chris Meng

      

            本文基于的软件环境是mmwave_sdk_01_00_00_05和CCS7.1。本文测试使用的硬件是xWR1642 EVM,类似的方法适用于xWR1443 EVM。

             用户需要预先安装好mmwave sdk,CCS和Uniflash。相关链接如下:

    • mmWave SDK: mmWave Software Development Kit

    http://www.ti.com/tool/mmwave-sdk

    • CCS7.1

    http://processors.wiki.ti.com/index.php/Download_CCS#Code_Composer_Studio_Version_7_Downloads

    • Uniflash

    http://www.ti…

  • 嵌入式处理: DCA1000EVM使用指南

    Other Parts Discussed in Post: IWR1642BOOST, AWR1243, DCA1000EVM

    作者: TI 工程师 Chris Meng; Yide Fang

     

    一、开发环境

    1、硬件

    • AWR1243/xWR1443/xWR1642BOOST(本文以IWR1642BOOST为例)
    • DCA1000EVM
    • 5V/2.5A(电流要求不小于2.5A)电源适配器1个或2个  
    • micro USB线2条
    • RJ45网线1根
    • 60引脚Samtec连接线(DCA1000EVM自带)
    • mmWave Studio(以mmWave Studio2.0.0.2为例)
    • MATLAB Runtime Engine v8.5.1(注意:必须是这个版本的,更高版本的并不兼容,同时需要下载的是32-bit的。建议使用本文最后的链接直接下载。)
    • XDS Emulation Software Package v6.0.579.0 及以上版本…
  • 电源管理: TI《电源设计基础》中文版新书全新上市!你可知大咖Robert当年电源设计的精彩故事?

    万众期待的Robert A. Mammano新书《电源设计基础》简体中文版隆重上市!电源设计入门推荐经典书籍!

    天猫购买点击这里,京东购买点击这里

       

    作者:Tim Goodrow

    我于2003年7月加入TI,负责电源管理营销方面的工作。在我工作的第一周,我的老板是这样向我介绍Robert Mammano的:“Tim,我想介绍Robert Mammano给你认识。Robert是首个开关电源控制集成电路[IC]的发明者。”

    Robert当时正在管理TI的全球电源设计研讨会,并在我们的办公室与技术专家会面。对于我而言,能够与电源行业的标志性人物会面,是一个令人难忘的时刻。

    时间快进到2016年1月——我的老板表示希望让我负责一个新项目,记得当时他是这么和我说的:“Tim,我希望你和Robert Mammano一起工作,共同编制一本电源教科书,总结出我们三十年电源设计研讨会的技术内容。”…