作者:Stefano Zanella

我对电动汽车的喜爱是显而易见的。我开全电动汽车已经有四年多的时间了,行驶里程有60000英里,大约100000公里。我选择电动汽车的原因有很多,不过归根结底是因为电动汽车真的很棒。它安静得出奇;它的加速性能无人能敌;也不需要更换机油;而且想去哪儿就去哪儿,根本不用考虑速度或时间对于行驶里程的影响。

从4节串联(微型混动汽车),到12-16节串联电池(轻度混合汽车),直到96节串联电池(电动和混动汽车),根据汽车技术规格的不同,会有一节或很多节并联电池。然而,从IC的角度出发,串联电池节的数量才是关键点,并联电池节数量可根据需要随意确定。电池管理系统 (BMS) 是驾驶员、汽车和电池之间的重要纽带。BMS包含监视和保护电池的电子元器件。我经常对这些电池管理电子元器件的性能感到好奇,特别是诸如bq76PL455A-Q1的电源管理IC的性能到底怎么样;实际上,正是这款器件使我的汽车能够正常行驶,并且提升了车辆的性能。作为驾驶员,我急需知道电池的续航里程,以及汽车充电完成的时间。我还想知道,我的电池状态是不是良好。如果我还能够知道我的汽车加速非常快的话,我也会很高兴。我们来看看IC所具有的不同技术规格如何帮助实现我所需要的功能。

续航里程和加速

续航里程是另外一个了解电池剩余电荷的方法,这一参数被称为电荷状态 (SoC)。有手机的人都知道,电池的容量会随着时间的推移而逐渐下降。一个电池在一个指定时间点上能够保存的最大电荷量被称为健康状态 (SoH)。计算SoH和SoC的方法有很多(请查看TI Impedance Track™ 技术),不过这些方法都会计算电池电压、电池温度和电池组电流。

某些锂离子化学电池,比如说磷酸锂铁电池,SoC相对于电池电压的曲线非常平缓。电池电压中的一个小误差就有可能导致SoC估算中的巨大误差。

一个LiFEPO4电池的SoC曲线

监视需要测量电压、电流和温度。诸如bq76PL455A-Q1的监视IC,对于大约4.5V的电池电压,它在0°C至65°C温度范围内的准确度为2mV,在-40°C至105°C温度范围内的准确度值为4mV,通常情况下,电池电压精度在很大程度上取决于输入电压。请注意,我在这里讨论的是真正的准确度:这个准确度包括所有由回流焊和前几个热循环所导致的偏移。有时候,数据表技术规格会与你在电路板上看到的值大不相同。加速也与SoC密切相关,由于电池电压下降,所以电池能够产生的最大功率也下降了。任一SoC上的过多电流,特别是在处于低SoC时,电池会老化的很快。

  

安全性

到目前为止,电池在汽车中的应用已经有150年的历史了,所以汽车厂商也在这方面为你提供帮助。他们是如何做到的呢?汽车停止充电和放电的时间恰到好处。通常情况下,一个BMS具有一个单独的保护器——这是一组比较器,它们检查每节电池的电压,并且确保电池电压在正确的范围内。如果监视器或保护器检测到一节电池处于过压阀值上或者处于欠压状态下,那么充电或放电将终止。如果监视器或保护器少报电压,另外一个将停止充电放电。

事实上,虽然故障很少发生,但是大多数汽车厂商都将他们的大部分时间花费在汽车安全性的开发方面。这也是为什么一个IC具有如此之多的自我诊断特性,并且一个监视器能够诊断绝大部分系统的原因。例如,bq76PL455A-Q1能够检查线路断开,同时具有内置自检以验证已定义的内部功能,并且能够以多种方法在安全性方面为用户提供帮助。

成本

与我对电动汽车的钟爱程度一样,我也很希望电动汽车能够再便宜一些。很明显,在汽车成本中,电池占了很大份额。减少成本的最简单方法就是少花钱多办事。在电池应用领域中,这就意味着更小的保护带,而反过来,也就表示需要更多精确的监视器和保护器。通常情况下,保护器不如监视器精确,所以,实际上是保护器的准确性拉高了的保护带数量。

主动和被动电池节均衡是另外一个重要特性。如果没有电池均衡,那么大容量电池会很快失效。当第一节电池无电时,放电驱动停止。当第一节电池充满时,充电停止。在没有均衡的情况下,第一节完全放电的电池与第一个充满电的电池互不相干;电池均衡减少了这两节电池之间的电荷差异。被动均衡在这方面的表现很不错,事实上,你可以拿一个不可用的电池组,并且对其进行一次均衡,以消除漂移效应。然而,随着时间的推移,电池节的容量,它们能够保持的电荷数量也会发生改变,并且容量扩散会随着时间的推移变得越来越大。

还有另外几个对于驾驶员来说不太明显的方法,能够使汽车厂商降低成本。第一代系统通常使用控制器局域网 (CAN) IC和隔离器,用于与主机控制器通信。这是一种比较昂贵的通信方式。更新一代的IC拥有经改进的通信方式。在无需隔离器的情况下,通过隔离式差分通用异步接收器/发射器 (UART)来完成通信,数个bq76PL455A-Q1能够以菊花链配置进行通信。价格低廉的电容器能够帮助你实现隔离。

集成的监视器和保护器,以及每个IC能够监视越来越多的电池节数量也有助于进一步降低成本。bq76PL455A-Q1能够监视多达16节电池,并且具有一个集成式保护器,从而极大地降低了系统成本,特别是对于48V轻度混合动力系统来说更是如此,因为单个IC能够替代多达4个IC,2个12节监视器和2个12节保护器。

当我驾车时,我对汽车电池组内所具有的业内最佳技术水平而感到高兴。我也很愿意驾驶一辆具有更好、更加精确电池管理IC的汽车驶向未来。

 

原文链接:

https://e2e.ti.com/blogs_/b/behind_the_wheel/archive/2015/12/10/from-millivolt-to-miles-how-the-performance-of-battery-management-ics-affects-the-performance-of-the-car-i-drive

Anonymous
  •   新能源的电动汽车应该是未来的发展方向,做为汽车的动力之源电池可以说是电动汽车的动力源泉,对于汽车的动力性能和安全性能都是至关紧要的。对于其的管理更是重中之重的头等大事,正所谓“失之毫厘,谬以千里”。对整个电池系统的每一节都必须进行细致入微地管控,正如文中所述“如果没有电池均衡,那么大容量电池会很快失效。当第一节电池无电时,放电驱动停止。当第一节电池充满时,充电停止”,这好比“木桶定律”。TI的bq76PL455A-Q1这款芯片能够监视多达16节电池,并且具有一个集成式保护器,从而极大地降低了系统成本,可以说是电池管理技术应用的一个非常好的选择。

  • 在电动汽车组成中,电池管理系统BMS是核心部分之一,它主要保护电池安全可靠的使用,充分发挥电池的能力,提高电池的使用寿命,通过一系列的管理和控制,保障电动汽车的正常运行。采用BQ76PL455A-Q1研发,可以缩短开发周期,提升使用效率,节省成本,是一种不错的选择。

  • 电池管理系统BMS对整车电池组的智能管理至关重要,同时与整车控制器,充电机,电压采集部分要求精度高。一款高精度的电压采集芯片对于电池监测来说相当重要。

  • SOC更关注的是电池使用时间过长导致容量衰减后,很容易BMS对SOC的估算不准。而且每个厂家的电池特性不一样,电池种类也不同,而且电芯成组后的性能也和单个电芯有差异都会影响到SOC的估算,所以需要的数据信息比较大,也是难点。目前市面上的BMS使用LTC6803较多但是成本仍未降下来,新的芯片方案进来除了芯片自身的成本问题就是通信隔离和供电的问题,虽然大部分厂家都在使用电池给管理芯片供电,但通信方面仍是成本较高,TI可以解决这点很好。由于电池包串联数量增加,使用菊链式连接无法解决电池组中串联熔断器和维修开关的损坏对电路的冲击。

  • 电动汽车是环保项目,得以飞速发展,必定对电池及电池监测的要求越来越高,也保障了汽车的安全性。bq76PL455A-Q1的监视IC,这个精度非常高,对于大约4.5V的电池电压,它在0°C至65°C温度范围内的准确度为2mV,在-40°C至105°C温度范围内的准确度值为4mV,通常情况下,电池电压精度在很大程度上取决于输入电压。对于每块电池设置检测自动剔除不良的,在在仪器上自动显示某块电池不良,还要有根据每块电池性能来实现冲放电能力的大小,那多好,这样电池大大延长了寿命。