• 看懂MOSFET数据表,第2部分—安全工作区 (SOA) 图

    嗨,我的FET狂热爱好者同行们,欢迎回到“看懂MOSFET数据表”博客系列的第2部分!作为一名功率MOSFET的产品营销工程师,在FET数据表的所有内容中,除了电流额定值(本博客系列中的下一篇文章,这么看来,也不算是巧合)之外,我被问到的最多的问题可能就是安全工作区 (SOA) 曲线了。这是一片需要某些技巧和手段才能完全了解的地带,这是因为每个供应商都有各自生成SOA曲线的方法,并且在提供有用信息方面,这个曲线所具有的价值与阅读数据表的人对于读到的信息的理解能力直接相关。虽然FET也许在热插拔应用中能够发挥其最大价值(在这些应用中,FET特意地在其线性区域内运行),不过,我们看到越来越多的电机控制、甚至是电源用户将这个图用作总体稳健耐用性,以及FET处理大量功率能力的指示器。

    如图1所示,可以用5个完全不同的限制条件来绘制整个SOA,每个限制条件规定了整个曲线的形状,TI的100V D2PAK CSD1…

  • 万圣节来临,动手做一个无线充电的南瓜灯吧

    Other Parts Discussed in Post: BQ51013B, BQ500212A

    Gordon Varney是TI电池管理部门的一名系统工程师,为了庆祝即将来临的万圣节,他动手制作了一个通过无线充电来提供电能的南瓜灯。

    具体来说,他在镂空的南瓜底部嵌入一个铜线圈,连上一个无线电源接收器开发板(型号为bq51013B),然后将南瓜放置到一个嵌入桌面的Qi无线充电站上,南瓜灯就被点亮了。

      

    视频:

     video platformvideo managementvideo solutionsvideo player

    或在优酷观看视频 http://v.youku.com/v_show/id_XNjI3NzkxMDEy.html

    一起来分享您的万圣节DIY作品吧!

    参考资源:

    1, bq51013B开发板

    http://www.ti.com.cn/tool/cn/bq51013bevm-7…

  • TL431反馈回路的分析和设计

    Other Parts Discussed in Post: TL431, UC3843, LM3481, LM5022, ATL431

    TL431(如图一)是最常用的三端可调电流基准源之一,热稳定性能好,性价比高,被广泛应用于运放电路,比较器电路,ADC基准源,可调压电源,开关电源等。在隔离开关电源电路中尤为常见,TL431常被用做运放配合线性光耦来完成电压环的补偿。如图二所示(图中L是为了降低输出电压纹波加的小电感)。

    图一

    图二

    简要介绍反激电源闭环反馈回路原理:线性光耦只适合传输低频信号且在传输过程中会产生较大的传输误差,为了消除光耦的传输误差将TL431设计的误差放大器放在光耦输入侧。一旦输出电压偏高,TL431的reference pin 电压升高,相当于运放反向输入端的电压上升,TL431阴极相当于运放的输出端,其电压会有所下降,流过线性光耦二极管的电流变大,线性光耦三极管电流同时变大,RFB电压降变大,Vre…

  • USB功率输出 2.0 vs 3.0

    Other Parts Discussed in Post: TPS25740, TPS25740A

    当我第一次听说电影《蝙蝠侠大战超人:正义黎明》时,我的内心是疑惑的,因为这两位可都是“好人”。而适用新一版USB功率输送(PD)规则(版次:1.0a)的USB已限量发布,这就导致了一个类似问题:究竟哪个版本的USB PD可以适用你的设备?

    USB PD 3.0的发布并不意味着USB PD 2.0的完结和过时。尽管现在USB 3.1都有了,很多应用仍在持续使用USB 2.0。同样的,无论是3.0还是2.0,他们都是进行USB功率输送的靠谱选择,且二者具有一定的互操作性。

    我们需摒弃USB PD 2.0和3.0遵循的是不一样的电压分布或幂规律的错误想法。对于这两种PD来说,所遵循的幂规律都是一样的。其中最重要的规律包括:

    • 超过15W的源应显示为5V和9V。
    • 超过27W的源应显示为5V、9V和15V…
  • 用简易充电器为智能家庭供电

    无线连接和低功耗嵌入式处理技术的进步已为智能家居和楼宇提供了新的应用。当然,大部分智能家居系统都具有一个处在固定位置的控制面板或基本单元,可以插入交流电源系统。但也可能有一些构成整个系统一部分的分布式(和可移动)无线传感器或摄像头。这些外围设备并不总是靠近永久电源。图1所示为具有多个远程外围设备和中央网关(控制器)的典型系统。

     

     

    1:智能家居的示例

     

    这些无线传感器或摄像头中的许多类型将需要电池且频繁使用,需要定期更换电池,从而增加了维护成本。因此,对于这些模块化配件,可充电电池越来越受欢迎。在某些情况下,控制面板单元也配有电池,以在交流电源故障的情况下提供备用电源或报警。

     

    若您正在开发智能家居系统,您可能希望将您的工作集中在系统功能上,而非集中于供电和再充电的基本任务。由于锂离子电池近年来变得如此普遍,因此专用充电IC解决方案有许多选择。

     

    对于小电池和低充电电流,您可使用经济高效(且相对容易实现)的线性充电器…

  • USB 充电器的过去与现在:Type-C达到能源效率标准

    Other Parts Discussed in Post: PMP15002

    在计划写本篇博客时,我在谷歌趋势中输入了“Type-C”。如图1所示,自2015年以来对这一词语的兴趣一直在上升。

     

    1:谷歌趋势上的兴趣走势图(关键词:Type-C

     

    USB Type-C设备在现实世界中也越来越流行,许多流行的手机和平板电脑采用USB Type-C接口。我预计在未来几年采用USB Type-C接口的产品将迅速增加。

    为什么功率为15W5V3A)?

    除了具有正反都可插的插头,USB Type-C可提供比以往任何USB版本更大的功率。虽然对于USB 3.1和USB充电,USB Type-C可支持高达100W的功率,但是系统设计者必须仔细选择功能,保持合理的整体成本。

    USB Type-C接口采用了15W功率,是标准USB 2.0充电速率的六倍。

    对于大多数智能手机和平板电脑,15W已经足够…

  • 克服驱动并联 LED 串的难题

    LED 正在寻找其扩充产品应用范围的途径。汽车照明、电视背光灯以及平板电脑只是几个需要多个 LED 的应用。使用恒流驱动大量 LED 即可通过长长的串行连接完成,也可通过并行驱动多个 LED 串完成。但是,将大量 LED 连成长串会导致高电压及单点故障问题。同样,以并联形式为多个串供电需要多个电流调节器,每串一个,这可导致更高的复杂度与成本。当前的趋势是让多个串并联工作,本文将探讨实施电路系统达到这一目标的方法和原理。

    LED 与标准二极管类似,也是电流驱动型器件。它具有 I-V 曲线,其中电流与电压为非线性,而且正向电压的一个小小变化就会导致一个大的电流变化。由于 LED 电流差不多与 LED 光通量成正比,因此对于电视等应用来说精确控制电流至关重要。但并不是所有应用都必须要求 LED 亮度匹配的高精度。如果 LED 采用单串形式驱动,那么亮度肯定匹配,因为每个 LED 具有相同的电流强度。随着所用 LED 数量的增加,就必须使用并联串…

  • 理解输出电压纹波和噪声一:输出电压纹波来源和抑制

    Other Parts Discussed in Post: LMZM23601

    作者: Yuan Tan

    医疗设备、测试测量仪器等很多应用对电源的纹波和噪声极其敏感。 理解输出电压纹波和噪声的产生机制以及测量技术是优化改进电路性能的基础。

    第一部分:输出电压纹波

    以Buck电路为例,由于寄生参数的影响,实际Buck电路的输出电压并非是稳定干净的直流电压,而是在直流电压上叠加了输出电压纹波和噪声,如图1所示。

    图1. Buck 输出电压纹波和噪声

    实际输出电压纹波由电感电流与输出阻抗决定,由三部分组成,如图2 所示。

    1. 电感电流纹波通过输出电容的寄生电阻ESR形成的压降
    2. 输出电容的充放电
    3. 寄生电感引起的电压突变

    图2. 输出电压纹波的组成

    不同类型的输出电容,寄生参数的大小不同,三部分纹波所占的比例也有所不同。因此,使用不同类型的输出电容会得到不同波形的电压纹波。如图3所示,电解电容的ESR较大,纹波由ESR主导,波形与电感电流纹波形状类似…

  • 集成功率器件可简化FPGA和SoC设计

    Other Parts Discussed in Post: LM26480

    工业电子产品的发展趋势是更小的电路板尺寸、更时尚的外形和更具成本效益。由于这些趋势,电子系统设计人员必须降低印刷电路板(PCB)的尺寸和成本。使用现场可编程门阵列(FPGA)和片上系统(SoC)的工业系统需要多个电源轨,同时面临小尺寸和低成本的挑战。集成柔性功率器件可以为这种应用显著降低成本,减小解决方案尺寸。

     

    集成柔性功率器件在同一封装内包含多个DC/DC转换器。这些DC/DC转换器可以是单个封装中的降压转换器、升压转换器和/或LDO的任何组合。图1是一个示例功能框图,其中LM26480包括两个2MHz高效1.5A降压转换器和连个300mA LDO。

     

    1LM26480功能框图

     

    让我们通过一个例子来说明使用集成的柔性功率器件的好处。设想设计为由SoC或FPGA控制的无人机设计电源管理系统。图2显示了该系统中的四个组件,它们完全匹配电源管理IC…

  • 看懂MOSFET数据表,第1部分—UIS/雪崩额定值

    在看到MOSFET数据表时,你一定要知道你在找什么。虽然特定的参数很显眼,也一目了然(BVDS、RDS(ON)、栅极电荷),其它的一些参数会十分的含糊不清、模棱两可(IDA、SOA曲线),而其它的某些参数自始至终就毫无用处(比如说:开关时间)。在这个即将开始的博文系列中,我们将试着破解FET数据表,这样的话,读者就能够很轻松地找到和辨别那些对于他们的应用来说,是最常见的数据,而不会被不同的生产商为了使他们的产品看起来更吸引人而玩儿的文字游戏所糊弄。

    看懂MOSFET数据表,第1部分—UIS/雪崩额定值

    自从20世纪80年代中期在MOSFET 数据表中广泛使用的以来,无钳位电感开关 (UIS) 额定值就已经被证明是一个非常有用的参数。虽然不建议在实际应用中使用FET的重复雪崩,工程师们已经学会了用这个度量标准在制定新器件开发方案时避免那些有可能导致问题的脆弱器件。在温度范围内具有特别薄弱UIS能力或者发生严重降级的器件…

  • 同步降压转换器中的输入和输出电容考量因素

    电容对于同步降压转换器而言,是个至关重要的组件。由于有着各种各样的电容技术,因此,如图1所示,在设计同步降压转换器时需考虑输入和输出电容的参数。

      

    1:同步降压直流/直流转换器

     

    电力电容的选择参数如下文表1所示:

     

    降压转换器性能特性

    需考虑的电容参数

    功耗

    有效串联电阻(ESR)

    电压纹波性能

    有效串联电阻(ESR)

    负载瞬态(交流)性能

    有效串联电感(ESR)

    有效串联电阻(ESR)

    电容

    成本

    视技术和供应商而定

    尺寸

    长、宽、高

    可靠性

    电容材料

     

    1:降压转换器性能 vs. 电容参数

     

    下文表2所示为各类技术相关的电容特性。

     

    电容技术

    ES…

  • 基于移相控制的多路输出降压变换器提升EMI性能的PCB布局优化

    Other Parts Discussed in Post: LMR14030-Q1

    作者:德州仪器Gavin Wang 

    电源设计工程师通常在汽车系统中使用一些DC/DC降压变换器来为多个电源轨提供支持。然而,在选择这些类型的降压转换器时需要考虑几个因素。例如,一方面需要为汽车信息娱乐系统/主机单元选择高开关频率DC/DC变换器(工作频率高于2 MHz),以避免干扰无线电AM频段;另一方面,还需要通过选择相对较小的电感器来减小解决方案尺寸。此外,高开关频率DC/DC降压变换器还可以帮助减少输入电流纹波,从而优化输入电磁干扰(EMI)滤波器的尺寸。

     

    然而,对于正在尝试创建最新汽车系统的大型汽车原始设计制造商(ODM)来说,符合所要求的EMI标准至关重要。这些要求非常严格,制造商必须遵守诸多标准,如国际无线电干扰特别委员会(CISPR) 25标准。在很多情况下,如果制造商不符合标准,汽车制造商就无法接受相应的设计。

     

    因此,对于DC…

  • 【视频分享】如何简化高电压电流测量

     video platformvideo managementvideo solutionsvideo player

    视频部分内容:

    问:客户正尝试监控他们的48伏特供应电压,而电流范围则是介于100毫安培到25安培之间。

    答: 可以使用间接测量方式,使用变流器或霍尔效应感测器测量电流,不过很可惜,变流器只对AC有用,所以这个方式对客户不可行。

    霍尔效应感测器也测量DC,不过价格稍贵一点,还有点苯重,而且如果处理的对象是金属和磁心,价格就会太昂贵。

    最简单的方法是直接测量,只要将电阻和负载供应串联,分路电阻就会产生电压,代表你供应至放大器的电压,接着就能获得输出电压。

    问: 您说最简单的方法是直接测量,我需要向客户推荐合适的放大器吗?

    答: 是的。回想在学校的日子, 我们通常最常想到的是标准的四电阻差异放大器。但现在,因为我们必须测量微量电压,通常以毫安培为单位,还要测量大量电压,通常是48伏特,最高还会到好几百伏特…

  • 给LED供电的选择比比皆是!

    有很多拓扑都可用于为 LED 供电。您或许已经知道,在开始选择之前首先要明确设计要求,否则,您最后得到的设计方案可能就不够理想,甚至更糟的是无法确保长期正常工作。例如,在驱动一个或多个 LED 时,LED 的最小及最大正向压降、电流等级以及工作温度可决定所需的转换器输出电压范围。例如,在查看典型红光 LED 产品说明书时,我发现在其理想的驱动器电流下正向压降的变化幅度为 35%。如果 LED 制造商针对正向电压将部件进行“分组”或“收纳”,那么变化幅度将下降到更加合理的 6%。此外,相对正向压降可随工作温度的变化而产生 13% 的相应变化,而为 LED 选择设定电流则有助于将此变化提升 16%。

    那么,这都代表什么意思呢?了解完这些信息之后,就需要确定转换器的最小及最大输出电压。这只是将所有 LED 正向压降与传感电阻器电压相加的总数。可根据转换器输入电压范围确定输出电压是否始终保持较大值…

  • 热管理:突破功率密度障碍的 3 种方法

    Other Parts Discussed in Post: TPS566242, TPS25985, TLVM13660

    几乎每个应用中的半导体数量都在成倍增加,电子工程师面临的诸多设计挑战都归结于需要更高的功率密度。例如下面这几类应用: 

    • 超大规模数据中心:机架式服务器工作使用的功率让人难以置信,这让公用事业公司和电力工程师难以跟上不断增长的电力需求。
    • 电动汽车:从内燃机到 800V 电池包的过渡会导致动力总成的半导体组件数量呈指数增加。
    • 商业和家庭安防应用:随着可视门铃和互联网协议摄像头变得越来越普遍,它们的尺寸越来越小,这对必要的散热解决方案增加了约束。

    实现更高功率密度的障碍是什么?实际上,热性能是电源管理集成电路 (IC) 在电气方面的附加特性,既无法忽略也不能使用系统级过滤元件“优化”。要缓解系统过热问题,需要在开发过程的每个步骤中进行关键的微调,以便设计能够满足给定尺寸约束下的系统要求。以下是 TI 

  • 用一个Hercules™ LaunchPad™ 开发套件控制GaN功率级—第2部分

    在我的上一篇博文中,我为大家介绍了一个动手操作项目:用一个氮化镓 (GaN) 功率级、一个Hercules™ 微控制器和一个滚轮来调节一盏灯的亮度。我讲到了设置、设计,以及如何正确地驱动这个功率级。

    在这篇博文中,我打算试一下你的设计成果。经验证,LaunchPad™ 能够产生出正确的信号。那么,就让我们把它接到评估套件上吧。

    准备评估套件,并将其连接至LaunchPad开发套件

    LMG5200评估模块 (EVM) 一同提供的还有一块驱动GaN集成电路 (IC) 的电路。你需要将其断开,并且连接你的LaunchPad开发套件。

    图1:移除电阻器R6和R7

    断开板上驱动电路比较容易。你只需要从印刷电路板(PCB,请见图1和图2)上移除两个0Ω电阻器,R6和R7。最简便的方法就是使用一个热风枪、

    图2:电阻器R6和R7在PCB上的位置

    现在,你有了两个测试点,TP9和TP10…

  • 基于 GaN 的高效率 1.6kW CrM 图腾柱PFC参考设计 TIDA-00961 FAQ

    Other Parts Discussed in Post: C2000WARE, POWERSUITE, SFRA

    作者: TI 工程师 Aki Li, Rayna Wang

    高频临界模式 (CrM) 图腾柱功率因数校正 (PFC) 是一种使用 GaN 设计高密度功率解决方案的简便方法。TIDA-00961 参考设计使用 TI 的 600V GaN 功率级 LMG3410 和 TI 的 Piccolo™ F280049 控制器。功率级尺寸 65 x 40 x 40mm,功率密度大于 250W/inch3;在 230V 交流输入和满载情况下效率可达 98.7%;功率因数>0.99,输入电流THD小。此设计适用于多种空间有限的应用,如服务器、电信和工业电源等应用。同时硬件设计符合传导发射、浪涌和 EFT 要求,可帮助工程师实现 80+ Titanium 规格。

    TIDA-00961为工业界提供了一套前沿的解决方案,本…

  • 为什么静态电流 (Iq) 对于USB Type-C很重要?

    在全新的笔记本电脑、智能手机和平板电脑推出后,USB Type-C成为了一个热门话题;在这些设备上都有即可用于充电,又可用于连接外设的Type-C端口。

    这个变化增加了对于Type-C AC/DC充电器和充电宝的需求量,这是因为Type-C接头具有方便用户使用的可翻转功能。而更加重要的一点是,Type-C充电器和充电宝普遍适用于多个笔记本电脑、智能手机、平板电脑以及更多其它电子设备。

    有意思的是,这些充电器和充电宝的配置与它们的上一代产品Type-A并没有很大的不同。然而,某些充电器设计人员有可能会忽略的一个关键点,那就是由于额外的Type-C电路,Type-C连接会需要额外的电能。而这不仅仅是USB 2.0时代的D+/D-连接。

    Type-C需要配置通道 (CC) 引脚来检测插头方向、确定已连接端口的用途,并且在需要更高的输出电压时建立额外的电力传输 (PD) 通信。这些额外功能需要更加复杂的集成电路 (IC),这也就自然会消耗更多的电流…

  • 基于BQ40z80的电量计电路设计原则

    Other Parts Discussed in Post: BQ40Z80, CSD18510Q5B, BQ76200

    作者:Weng Iris

    1.介绍

    BQ40z80是完全集成的2-7节锂离子或锂聚合物电池管理芯片,采用已获专利的Impedance Track™技术,具备电流、电压和温度等全面的可编程保护功能。其硬件电路设计主要分为三个部分:主电流回路模块、电量计模块和保护模块。

    2.主电流回路
    主电流回路即指在电量计的控制下对电池进行充电、放电的电流回路。当充电时,该回路的电流从PACK+开始,经过用于控制充电和放电的开关FETs、化学保险丝、电池和电流采样电阻,最终回到PACK-。

    2.1充、放电FETs
    充、放电的两个N-CH FETs以漏极对接的方式串联在PACK+和电池组的正极,如图2-1所示,Q2、Q3分别是充、放电FET。当进行充电或放电时,Q2和Q3同时导通;当充电停止时,Q2关断;当放电停止时,Q3关断…

  • 选择双向转换器控制方案

    Other Parts Discussed in Post: LM5170, LM5170-Q1

    作者:Youhao Xi

    48V-12V双电池电源系统正普通用于轻度混合动力电动车。车辆的动态工作条件可能需要在两个电池轨道之间来回传送高达10kW的电功率。由于移动车辆中的各种操作情况,控制一个方向或另一个方向上的功率流需求可以说是一个相当复杂的任务,需要数字控制方案的智能。因此,当领先的汽车制造商和一级供应商开始开发48V-12V双向电源转换器时,大多数都采用了全数字方法。

    全数字解决方案成本昂贵,因为它们需要许多离散的模拟电路。这些模拟电路包括精密电流检测放大器、功率MOSFET栅极驱动器、监视和保护电路等。由于电路板上的设备数量庞大,离散解决方案显得笨重且不可靠。为了减少解决方案尺寸和降低成本,同时提高性能和系统级可靠性,一些一级供应商正在寻找一种混合架构,其中微控制器处理更高级别的智能管理,且高度集成的模拟控制器实现电源转换器级…

  • 从零开始快速让电量计工作起来

    Other Parts Discussed in Post: BQ40Z50, BQ27Z561, BQ40Z50-R2, BQ27542EVM

    作者:Mingmo Zhu

    如果你第一次使用电量计不知道从何入手,如果你看到那么多寄存器参数不知道配置哪个,如果你面对电量计技术参考手册一两百页有点迷茫,那么这个文档或许可以帮到你。下面让我们一起从零开始,以最小配置快速让电量计正常工作起来。

    第一步,准备好电量计硬件板子,对电量计供电。

    可以用TI 提供的EVM评估板,也可以用自己项目带有电量计的板子。根据电池组串联节数不同,下面以最典型的单串电量计BQ27542EVM和多串电量计BQ40Z50EVM为例。一串多并的电池组按单串来对待,多串多并的电池组按多串来对待。

    单串电量计供电,用单节电芯按正负极性连接到BQ27542EVMCell+, Cell-即可,或者用直流电压源设置输出电压3.6V来代替电芯,如图1所示。EVMCell+…

  • 使用追踪电源来提高信号链性能

    Other Parts Discussed in Post: ADS1271, OPA1632, TLE2141

    作者:Scot Lester,德州仪器 (TI) 应用工程师

    本文阐述了直流偏置电源对敏感模拟应用中所使用运算放大器 (op amp) 产生的影响,此外还涉及了电源排序及直流电源对输入失调电压的影响。另外,本文还介绍了一种通过线性稳压器(一般不具有追踪能力)轻松实施追踪分离电源的方法,以帮助最小化直流偏置电源带来的一些不利影响。

    在许多运算放大器电路中,直流偏置电源会影响运算放大器的性能,特别是在与高位计数模数转换器 (ADC) 一起使用或者用于敏感传感器电路的信号调节时。直流偏置电源电压决定放大器的输入共模电压以及许多其他规范。

    在上电期间,必须协调直流偏置电源的顺序来防止运算放大器锁闭。这样会毁坏、损坏或者阻止运算放大器正常运行。本文解释了追踪电源对运算放大器的重要性,并介绍了一种利用通常不具有追踪能力的线性稳压器轻松实施一个追踪分离电源的方法…

  • 针对反向连接、浪涌钳位以及反向电流保护进行防御

    作者:Jim Bird 德州仪器

    如今的普通工作人员常常身兼装配工和安装工两种工作,这就意味着您的设计(无论好坏)需要简单易用,并需要良好的保护。平心而论,所有技术就摆在那里,而我们大多数人却对技术细节一点都不熟悉。这就是说,我们要继续装配我们的最新环绕音响系统、家庭办公网络,甚至在我们钟爱的汽车中装配最新的信息娱乐系统。在这方面与对功率密度、效率、精确度及小型化等不断增长的需求之间,电源保护向导非常繁忙。

    在过去几年里,我目睹了电路保护方案需求的增长,其可针对反向连接、浪涌钳位以及反向电流保护进行防御。这些要求主要针对电压绝对值范围介于 12 至 48V 之间的正极 GND 与负极 GND 两种系统。

    那么,这些听起来让人害怕的多元素威胁到底是什么呢?!

    • 反向连接代表 DC 电源反接,正极接负极,负极接正极。此外,由适配器供电的系统如果使用的是错误适配器,也会出现反向连接问题;
    • 浪涌钳位指的是超过最大负载额定电压的大峰值…
  • 德州仪器 CEDV 电量计算法介绍

    作者:Eason Yuan

      

    1.     传统电量计介绍

    随着市场清洁能源的需求以及应用市场的需要,锂电池在日常生活中有着越来越广泛的运用。为了实现对电芯电量的检测,在以往很多的应用场景下,通常采用电压测试法来预估锂离子电芯的电芯容量。但是随着对电量预估的精度要求的提高,加之电芯在不同温度和负载等应用情况下电压存在跳变,单纯地利用电压测量法来预估电量,已经不能满足精准测量电路的需求。

     

    2.     什么是CEDV?   

    CEDV是基于库仑积分的一种电量计量算法。比如BQ4050, BQ34110这些电量计都基于CEDV算法。CEDV是EDV的补偿,在了解CEDV之前,有必要介绍一下EDV。

    I.  什么是EDV

    EDV(end discharge voltage )如下图所示的电压和RM(电芯剩余容量)的对应曲线,是电芯快要耗尽的时候的电压值。之所以如此关注EDV,是因为在之前的对应电容量中电压值相对平坦不利于判断,故选择了低电量情况下,变化率较大的点作为EDV点…