我经常感到的奇怪的是,我们的行业为什么不在加快氮化镓 (GaN) 晶体管的部署和采用方面加大合作力度;毕竟,大潮之下,没人能独善其身。每年,我们都看到市场预测的前景不太令人满意。通过共同努力,我们能够大大增加这项高能效技术的市场渗透能力。

如果GaN取得胜利,我们都是赢家。世界范围内的能效只需提高1%就足以关闭45个火力发电厂。在我们的日常生活中,我们已经目睹了GaN技术的部署和采用—在几个月之前,有些事情我还不太明白,直到我女儿问我GaN长得什么样子时,我才意识到,在家中的节日彩灯中有数百个GaN:GaN LED。

一个很不错的合作主题就是GaN可靠性。即使GaN晶体管现在通过了传统硅质量检测应力测试,或被称为“qual”,它的部署和采用仍然很慢。由于它是基于硅材料的,“qual”并不能提振低用户对于投入回报的信心。虽然通过“qual”测试对于器件的生产制造、质量和可靠性具有里程碑式的意义,但还不清楚它在器件使用寿命、故障率和应用相关性方面对GaN晶体管具有怎样的意义。开发人员有多种选择,即使硅材料解决方案体积更大且能耗更高,但是它们已经过了测试。

对于采用GaN的开发人员来说,他们需要对这一部件有信心,相信它们在预期的使用寿命内能够在应用中实现稳健耐用运行。在TI,我们始终在深入思考这意味着什么,并将其归结为图1中所表示的2个项目。首先,传统硅技术方法需要针对GaN和其故障模式进行拓展。第二,应力测试需要包括电源管理的开关条件,而这是传统硅材料qual测试无法解决的。

1GaN质量鉴定需要现有硅方法体系的扩展,并且需要增加实际使用情况下的应力测试

当一个行业携起手来共同开发标准时,这些标准就被认为是可信的。预测性的可靠性标准需要对技术和其故障模式的深入了解;以及在测试、质量鉴定和产品运行方面的知识。预测性标准的优势在于极大加快了市场普及,而第一步就是意识到现有技术的不足和缺陷。

我首先在一份白皮书中(一个鉴定GaN产品可靠性的综合方法)对这个问题进行说明。这份白皮书引发了业内的讨论,这也促使我们将这个对话延续下去,我们在今年3月召开的应用电力电子会议 (APEC) 上提交了一份行业对话论文,并且接受IEEE国际可靠性物理学讨论会 (IRPS) 技术委员会的邀请。我们希望本次对话能够进一步扩展至工作组层面,并且在其他人也针对这个重要话题发表看法时拓展工业领域的协作。

TI正在通过可靠且可信赖的GaN产品努力打造一个能效更高的未来,将数年的硅制造专业知识和先进器件开发才能引入到GaN中。TI一直充分利用我们现有的生产制造基础设施和能力,使我们的600V GaN工艺符合要求。为了确保可靠性和稳健耐用性,在对我们的器件进行测试时,我们所使用的GaN特定测试方法远远超过了传统硅质量鉴定做法。

借助于合格的器件,电源设计人员能够实现GaN的满功率运行,打破市场普及阻碍,而最为重要的一点是,使我们有可能生活在一个能效更高的世界中。

原文链接:

https://e2e.ti.com/blogs_/b/powerhouse/archive/2016/03/22/let-s-gan-together-reliably

Anonymous
  • 由于氮化镓材料所具有的独特优势,如噪声系数优良、最大电流高、击穿电压高、振荡频率高等,为多种应用提供了独特的选择,如军事、宇航和国防、汽车领域,以及工业、太阳能、发电和风力等高功率领域。氮化镓具有比硅更高的能效,因此所需热沉数量少于硅。应用领域的扩展和军事需求的增加是驱动氮化镓半导体器件市场增长的主要力量。

    ti GaN

    1、方便易用的单个 QFN 封装取代三个 CSP。

    2、优化布局可最大限度降低电感,从而实现尽可能最低的开关损耗及干净的波形。增大的引线间距可满足爬电要求并且无需使用底层填料。

    3、增加功率密度,最大限度提高 dV/dt 抗扰度,并优化驱动力以便提高效率和降低噪声

  • 氮化镓场效应晶体管(FET)可以分立晶体管和单片半桥的形式来供应,其性能要比目前最好的商用硅MOSFET好10倍。但是,当许多设备被整合在一起来开发系统单芯片时,会发生什么事呢?而当这种芯片的性能要比硅芯片好上100倍时,又会发生什么事呢?

      如果我们往前看5到10年,我们将很容易地看到半导体技术的转变,将会如何改变我们日常生活的世界。

      GaN技术改变太空

      在恶劣的环境下使用的电源转换器,例如太空中,必须要有能耐承受辐射所造成的损害。在电气性能方面,氮化镓场效应晶体管好40倍,本身能够承受老化的辐射耐受功率MOSFET(radiation tolerant power MOSFET)的10倍的辐射(与其商业上的对手相比,辐射耐受MOSFET的性能明显差很多)。

      SpaceX公司的CEO Elon Musk就将其使命设定为把物体放到太空中的成本以数十倍计的减少幅度降低。随着GaN技术被应用到卫星,我们可以缩小电子设备的体积尺寸,省去对屏蔽(shielding)的需求,大幅改善板上酬载(on-board payload)的性能。GaN技术的出现,再加上SpaceX公司的创新,将改变我们利用空间的方式,加快探索的脚步... 搭起太空移民的舞台!

      GaN技术改变电力的使用

      今天,我们用电线为愈来愈多需要电力供电的小工具提供电源。我们经常随时、随身携带这些产品,但正如我们所知道的,它们的电池必须要经常频繁地充电。在2015年,采用GaN技术的无线充电系统将可以无线的方式来提供能量,为手机和平板计算机充电。在未来5年到10年,因可将薄薄的传输线圈整合进建筑物的地砖和墙壁中,所以也可一并省去对墙壁电插座的需求!

      当一台电动汽车停在一个嵌有发射线圈的楼层时,就是利用这种相同的技术来充电,而它们早已引进使用。目前有一个正在进行中的计划,它将把无线充电器嵌进到公车站中,在公交车在公车站停留的一分钟中,便可充足再开一英里的电,而开往下一站。

      GaN技术可以在安全的频率上实现高效的电力传输,这对硅晶体管而言,是一件艰难的工作。将GaN技术带到更高的电压和更高的频率,可以扩展无线电力传输的距离。

      GaN技术改变医疗

      技术的进展也带来了医疗上长足的进步。在一些领域,像是植入系统、成像、和人造器官等,在技术上都有重大的发展,这些都是因为GaN技术的出现而实现的。

      无线充电早已经对植入系统(如心脏泵)的发展产生重大影响。成像技术也以极快的速度在改善!由于采用氮化镓场效应晶体管和集成电路的更小和更有效之检测线圈的发展,而让MRI机器的分辨率可以大幅改善。也由于今天的氮化镓场效应晶体管的体积已小到足以放进内部有微缩成像系统的食用药锭中,而让结肠镜检查诊断成为过去式。藉由早期预警和非侵入性的诊断,这一类的非侵入性的突破可大幅地降低医疗成本。由于我们把整个系统整合在一氮化镓芯片,小型化和影像分辨率进一步改善了医疗照护的标准,同时,也把医疗费用降下来了。

      GaN技术改变未来

      EPC、GaN Systems、Transphorm、及Panasonic等几家公司正致力于从事扩大氮化镓场效应晶体管之间的性能差距,从10倍扩大到1000倍。随着性能的差距扩大和GaN技术被应用到更复杂的集成电路中,它将成为目前不可预见的应用的新的建构区块。

  • GaN晶体管因为能够实现更轻巧、更便宜的电源转换,正在成为MOSFET和IGBT产品的替代解决方案。而且GaN适用的功率范围为5W到500kW,满足各种适用范围,值得期待!

  • 新技术的推出,总需要一个完善的过程,经历时间考验的产品固然可靠,但性能优异的新技术更加诱人。或许在一些方面还有不足。正如文中所说,即使能效提升百分之一,社会效益都是非常可观的。目前电子产品更新迅速,寿命问题大家考虑得很少,因为不等产品损坏,就已经被淘汰掉了。

    当然作为新材料新技术,各方面的标准和规范健全也是必要和必然的。

  •    宽禁带半导体作为第三代半导体,正在引领一场巨大的电力电子技术革命,而作为其中的翘楚-GaN技术值得我们共同学习研究。

       GaN器件料具有禁带宽度大,电子漂移饱和速度高、介电常数小、导电性能好的特点,非常适用于制作抗辐射、高频、大功率和高密度集成的电子器件。与之相比,另一种宽禁带半导体SiC 拥有更高的热导率和更成熟的技术。两者的不同优势决定了应用范围上的差异,在光电领域,GaN 占绝对的主导地位,而在其他功率器件领域,SiC 适用于1200V 以上的高温大电力领域,GaN 则更适用900V 以下的高频小电力领域。

       TI推出了LMG5200,使客户能够将GaN轻松融入到电源解决方案中,并充分利用GaN所具有的优势,据我所知TI已经对GaN进行了超百万小时的加速测试,并且建立了一个能够实现基于GaN电源设计的生态系统。

       相信未来,宽禁带半导体将全面取代传统半导体。