I3 TEXAS
INSTRUMENTS

Getting Started with the
MSP430 LaunchPad

Student Guide and Lab Manual

Revision 2.01 O
February 2012

Technical Training
Organization



Important Notice

Important Notice

Texas Instruments and its subsidiaries (T1) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent T1 deems necessary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. T1 does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of T1 covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. T1’s publication of
information regarding any third party’s products or services does not constitute TI’s approval, warranty or
endorsement thereof.

Copyright © 2012 Texas Instruments Incorporated

Revision History

Oct 2010 — Revision 1.0

Dec 2010 —Revision 1.1 errata

Jan 2011 — Revision 1.2 errata

Feb 2011 — Revision 1.21 errata

June 2011 — Revision 1.30 update to include new parts

August 2011 — Revision 1.31 fixed broken hyperlinks, errata

August 2011 - Revision 1.40 added module 8 CapTouch material

September 2011 —Revision 1.50 added Grace module 9 and FRAM lunch session
September 2011 —Revision 1.51 errata

October 2011  —Revision 1.52 added QR codes

October 2011  —Revision 1.53 errata

January 2012  —Revision 2.0 update to CCS 5.1 and version 1.5 hardware
February 2012 —Revision 2.01 minor errata

Mailing Address

Texas Instruments

Training Technical Organization
6550 Chase Oaks Blvd

Building 2

Plano, TX 75023

Getting Started with the MSP430 LaunchPad



Introduction to Value Line

Introduction

This module will cover the introduction to the MSP430 Va ue Line series of microcontrollers. In
the exercise we will download and install the required software for this workshop and set up the

hardware devel opment tool — M SP430 LaunchPad.

Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization

Serial Communications

Grace

FRAM

|: Capacitive Touc

2

For future reference, the main Wiki for this workshop is located here:

www.ti/com/L aunchPad-workshop

Getting Started with the MSP430 LaunchPad - Introduction to Value Line


http://processors.wiki.ti.com/index.php/Getting_Started_with_the_MSP430_LaunchPad_Workshop�

Module Topics

Module Topics

INErOAUCEION 10 VAIUB LINE ..ottt sttt 1-1
T T LU T o] (oSSR 1-2
INtrOdUCEION 10 VAIUE LINE ..ottt bbbt et 1-3

T1 ProCESSOr POIOlI0....vieeiiitiieicsiesie ettt st 1-3
M SPA30 REIEASEH DEVICES......couiiieieiirieiete ettt sttt st sttt sttt sttt sttt sttt bt ne e es 1-4
M SPA30G2XX VAUE LINE PAS.....c.ccuiiiiieiisierieie ettt sttt sttt et sttt st 1-4
Y S0 . U SRS 1-5
V1< 000V K= |« TSP PP 1-5
VAlUE LiNE PEIPNEIAIS ...ttt ettt se bbb b ne e e eneas 1-6
LaunchPad DevelOpMENt BOAI.........c.coiiiiiriereeiereeie ettt st b s sae e es 1-7
Lab 1: Download Software and Setup HardWare ..............ccceiiiiiiiiieiceeee e 1-9
(0 o 1= ot (=SOSR 1-9
0o o 1= TP 1-10

1-2 Getting Started with the MSP430 LaunchPad - Introduction to Value Line



Introduction to Value Line

Introduction to Value Line

Tl Processor Portfolio

Portfolio at a Glance

MCcu
16-bit ultra-low 32-bit
power MCUs | real-time MCUs
C€2000™
™ Delfino™
MSP430 e
Piccolo™

Embedded Processing Portfo

32-bit
ARM® MCUs

Stellaris”™

| ARM Cortex ™-M3
| ARM Cortex-M4F

Sor
Portfolio at a Glance

32-bit ARM®
safety MCUs

Hercules™

ARM® Cortex ™-1d3

& Cortex ™-R4F

Software, Tools, Kits & Boards

32-bit

el
ARM® MPUs DS,G}AZM
Sitara™ Cc6000™ i
ARM® Cotex™-28 | C6-Integra
bl DaVinei™

Tl Embedded Processing Portfolio

" Portfolio at a Glance

DSP & ARM® MPU
Ultra-low

Multicore power

DSPs DSPs
C6000™ C5000™

High performance |

ﬁ | T

Upto 4[) MHz 1o
ol M
Flash Flash, RAM
1KBlo 206k8 16KB 10512 KB
Rna\o 110, ADC, PUM,ADC
LS8 CAN, 5P PG
Measurement, Mator control,
sensing, general digial pawer,
purpose lighting, ren. energy
0B 000 $18510%2000
WMPUSs — Microprocessors

Upto
80 MHz
Flash
8KBlo512KB
USB, ENET,

MACPHY GAN,
ADC, PWIM, SPI

Motion control, HMI,

indusiria autometicn,

S gnd
§1.00t$800

Fixedfioating
upto 220 MHz

Flash
256 KBlo 3MB

USB, ENET, FlexRay,
TimenPh
ADC, CAN, LIN,
SPIIEC, EMIF

Safety,
fransportation,
indusirial & medical

$5.00t0$30.00

Upto 32 KBIID ceche | |2 Cache rnDDR,
2%KBL2,LPODR, || DDR2LDR
DDRZ/3 support

cEiae Zéja?lem

h

i o | UPR, PRI PEia20,
Ustrptiy, AL WEER MoASF

Industrial automation, Mden audo, voice, vision,
portable daalerminals, securily, conferencin
single-board cornpuhng {est & measuremen

$5.00t0 $50.00 $60010820000

Velue Lineto Mo 15GH |
600 MHz floeting DSP +
Perf Lineto 15GHz | videoacceleralors

Upto 10 GHz
mulicore, fized!
floting + acceleralors

104 MBSL2,

1,1MB 2
R:p‘dctpnla,
404100 MAC,
fypelink, DOR2S

Telecom, medical,
mission critical,
bage stations

$d010 520000

Upto 300 MHZ
+encelerator

Upto 320 KB RAM
Upto 128KB ROM
was% snﬁ'\?c

Portable audiolvoice,
fingerprint biometrics,
poriable medical

§19510$1000

Released Devices ...

Getting Started with the MSP430 LaunchPad - Introduction to Value Line



Introduction to Value Line

MSP430 Released Devices

MSP430 Released Devices

300+ Ultra-Low Power Devices Starting @ $0.25USD
Featuring: Up to 256kB Flash, 18kB RAM), 25+ Package Options, Up to 113 pins, High integration

— Ultra-Low Power Performance — Analog Integration — Easy-to-Use —

MSP430 % E

16-vitrisccpu | L092 s | G2xx m
0.9V-1.65V Speed 16Mhz

Al devices feature: | Speed4mhz | % Jriasho.s-16k8 3
ROMto 2kB | som [ RAMto 256kB | v |
RAM to 2kB | wor | GPIO10-16

[E=]
aron F5xx [=w} CC430

Speed 25Mhz Speed 20Mhz
8/16Mhz Flash 8-256kB Flash 8-32kB
Flash 4-120kB 512kB coming RAM to 4kB
RAM to 8k soon. GPIO 40
Flxx Speed 16Mhz GPIO 14-80 RAM to 18kB
Speed 8Mhz Flash 1-120kB GPIO 32-83
Flash 1-60kB LD
Speed 24Mhz RAM to 10kB GPIO 10-64
FRAM 4-16kB [xpero GPIO 14-48
GPIO 14-28
Non-volatile
memory

ﬁE
[svm]
=3
[ e |
H
e
[=]
il
Em
Jrre_aa
Lt |

Value Line Parts...

A4
Part  Flash SRAM LISC L=t c X ADC Add*
Family |n imber (K‘B’) ®) GPIO Timers | WDT (,Ef{,f_f)' a2cIsP) e e e Features
G2xx1 | G2x01 | 05.1 128 10 1 ¥ i v b = Z =
G2x21 p i 128 10 1 b i b
G2x11 1.2 128 10 1 i b o i - Slope -
@ 32x31 i 128 10 1 i ¥ i % A =
G2Zxx2 S2x02 258 16 1 hd N Captouch YO
G2x12 1-8 256 16 1 A d hd A Slope Captouch YO
G2x32 1.5 16 1 v ¥ - Y A‘Sff'm Caprouch /O
©2x52 1-8 256 18 1 v ¥ v ¥ Agg‘m Cap touch /O
G2Zxx3 G2x032 z4az 258,512 24 b3 o = i = ki Captouch YO
Gx13 | 2.4.8.16 | 256,512 24 2 v Y i v Slope Captouch O
62x33 | 1-16 |256.512| 24 2 ¥ ¥ i = ¥ sl | e
. G2x53 1-16 256,512 24 2 Y e - % i . Agg]'l o Captouch YO
Power consumption @ 2.2V:
+ 0.1 JA RAM retention
+ 0.4 pA Standby mode (VLO)
+ 0.7 pAreal-time clock mode
» 220 A/ MIPS active
+ Ultra-Fast Wake-Up From Standby Mode in <1 ps CPU ...
5

1-4 Getting Started with the MSP430 LaunchPad - Introduction to Value Line



Introduction to Value Line

MSP430 CPU
AN PN
‘ RO /PC (Program Counter) ‘
0 - . \ R1 I SP (Stack Pointer) |
4 100_/o code _compatlble with = — |
earlier versions ] = |
¢ 1MB unified memory map R4 i |
- No paging . :: 2: }
¢ Extended addressing modes S Mmoo RT \ £
« Page-free 20-bit reach % Re | R8 k=
- Improved code density 8| LRe R N
- Faster execution :‘: :? }
¢ Full tools support through Rz Riz \
IAR and CCS R13 R13 \
R14 R14 |
‘ R15 R15 ‘
AV v
Memory Map ...
4]
Memory Map
Memory Map
MSP430G2553 shown
¢ Flash programmable via JTAG or OFFFFh | Interupt Vector Table
In-System (ISP) OFFEOQh
& ISP down to 2.2V. Single-byte or FFDFh AR
Word 0C000h
¢ Interruptible ISP/Erase II
¢ Main memory: 512 byte segments O10FFh Information
(0-n). Erasable individually or all 01000h Memory
¢ Information memory: 64 byte
segments (A-D)
Section A contains device-specific 03FFh RAM
calibration data and is lockable 0200h
¢ Programmable Flash Memory 01FFh 16-bit
Timing Generator 0100h Peripherals
8-bit
(())ESE Periphlerals
OFh 8-bit Special
Function
oh Registers
Peripherals ...
7

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1-5



Introduction to Value Line

Value Line Peripherals

Value Line Peripherals

* General Purpose I/O
Independently programmable

= Any combination of mput output, and interrupt (edge
selectable) is possible

Read/write access to port-control registers is supported by
all instructions

Each 1/0 has an individually programmable pull-up/pull-down
resistor

Some parts/pins are touch-sense enabled (PinOsc)
* 16 bit Timer_A2 or A3
2/3 capture/compare registers
Extensive interrupt capabilities
¢ WDT+ Watchdog Timer
= Also available as an interval timer
¢ Brownout Reset
Provides correct reset signal during power up and down
Power consumption included in baseline current draw

Peripherals ...

Value Line Peripherals

¢ Serial Communication
= USI with 12C and SPI support
= USCI with 12C, SPI and UART support

¢ Comparator_A+
= |nverting and non-inverting inputs
= Selectable RC output filter
= OQutput to Timer_A2 capture input
= Interrupt capability

¢ 8 Channel/10-bit 200 ksps SAR ADC
= 8 external channels (device dependent)
= Voltage and Internal temperature sensors
= Programmable reference

= Direct transfer controller send results to conversion memory
without CPU intervention

= Interrupt capable
= Some parts have a slope converter

Board ...

1-6 Getting Started with the MSP430 LaunchPad - Introduction to Value Line



Introduction to Value Line

LaunchPad Development Board

LaunchPad Development Board

USB Emulator

Connection %

Embedded Emulation

- 16kB Flash o ' boin 62430
1 pine

- 512B RAM _ (::I Connector
+ 2 Timer_A3's -
-8 Ch. Comp_A+ @ g 1 Crystal Pads
-8 Ch. ADC10 Chip 3 : X
- uscl Pinouts : ol & ] Part and Socket

i I
P1.3 Button :> £ : : 8 <:| Power Connector
LED dJ
S and.Jumpers ﬁ E Reset Button

P1.0 & P1.6

Lab...

Getting Started with the MSP430 LaunchPad - Introduction to Value Line



Introduction to Value Line

1-8 Getting Started with the MSP430 LaunchPad - Introduction to Value Line



Lab 1: Download Software and Setup Hardware

Lab 1: Download Software and Setup Hardware

Objective

The abjective of thislab exercise isto download and install Code Composer Studio, aswell as
download the various other support documents and software to be used with the MSP430
LaunchPad. Then we will review the contents of the MSP430 LaunchPad kit and verify its
operation with the pre-loaded demo program. Basic features of the M SP430 LaunchPad running
the M SP430G2231 will be explored. Specific details of Code Composer Studio will be covered
in the next lab exercise. These development tools will be used throughout the remaining lab
exercisesin this workshop.

Lab1: Hardware Setup

» Download and install tools
and documentation

» Review kit contents
+ Connect hardware
» Test preloaded software

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1-9



Lab 1: Download Software and Setup Hardware

Procedure

Note:

If you have already installed CCSv5.1, please skip the CCS installation procedure.

Download and Install Code Composer Studio 5.1

1

Click the following link to be directed to the CCS download Wiki:
http://processors.wiki.ti.com/index.php/Download_CCS

Y ou can use either the web installer or offlineinstaller. Using the web installer will limit
your download to only the components that you select. The offlineinstaller contains all
the possible content, so will likely be much larger than the web installation. The
following steps will cover the web installation method. Click the web installer link as
shown below:

CCS5v5.1.x

510 5.1.0.09000 November 3, 2011 lyyingows (web installer) & 1.9MB

Windows (offline installer) & 1200MB

Linux (web installer)é 1.7MB

Linux (offline installer) & 1100MB
Thiswill direct you to the “my.TI Account” where you will need to log in (note you must

haveaTI log in account to proceed). Once you agree to the export conditions you will
either be emailed alink or be directed to aweb page with thelink. Click on the link.

Be sure to disconnect any eval uation board that you have connected to your PCs USB
port(s). When you are prompted to run or save the executable file, select Run.

When the ingtallation program runs, accept the license agreement and click Next.

Getting Started with the MSP430 LaunchPad - Introduction to Value Line


http://processors.wiki.ti.com/index.php/Download_CCS�

Lab 1: Download Software and Setup Hardware

6. When the Choose I nstallation L ocation dialog appears, we suggest that you install Code
Composer inthedefault C. / ti folder. Click Next.

Choose Installation Location | '.

Where should Code Composer Studio v5 be installed? ‘

To change the main installation folder dick the Browse button.

~CCS Install Folder

c

|| nstall CC5 plugins into an existing Edipse installation

Texas Instruments

[ < Back ” MNext = ] [ Cancel

7. Inthe Setup Type dialog, select Custom and click Next.

Code Composer Studio v3 Setup | %®
Setup Type !
Select the setup type that best suits your needs.
Click the type of Setup you prefer.
Desrptor i
Complete Feature Set Select this option if you wish to
customize the individual features that
are installed.
Texas Instruments
< Back ] l Next > l [ Cancel

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1-11



Lab 1: Download Software and Setup Hardware

8. Inthe Select Processor Support dialog, you will select the devices that Code Composer
will support. More devices mean alarger installation and alonger installation time. The
free 16kb code size limited version is available if you only select MSP430. If you are also
attending another workshop, like the StellariswWare workshop, you should select Stellaris
Cortex M MCUs also. In these steps, we'll install the free version of the tools. Select
M SP430 L ow Power M CUs and click Next.

Code Composer Studio v5 Setup

Processor Support

Select Processor Architectures to be installed

»  [Description

(7 Processor Architectures
O c2sx 32-bit Real-time MCUs | induded: MSP430

O stellaris Cortex M MCUs E :

O cortex-R4F MCUs |

O amicx Cortex-A and ARMS processors —!

D Cex DSP + ARM processors

D DaVind Video Processors

[ select Al

Download size: 339 MB. Install size: 1525.5 MB.

Texas Instruments

l < Back ” MNext = ] [ Cancel

9. When the Select Components dialog appears, click Next.

10. When the Select Emulator s dialog appears, unselect M SP430 Parallel Port FET (un-
less you actually have one) and click Next.

Code Composer Studio v5 Setup l&]
Select Emulators -\1
Select the emulators you want installed and deselect emulators you want to :
leave out.
= Description -
= JTAG Emulator Support £
e . System driver for the MSP430 Parallel
W iSP430 Paralel Port FET Port interface {MSP-FFET430PIF)
MSP430 USB FET
Download size: 339 MB. Install size: 1525.5 MB.
Texas Instruments
< Back. I l Mext = l [ Cancel

1-12 Getting Started with the MSP430 LaunchPad - Introduction to Value Line



Lab 1: Download Software and Setup Hardware

11. The CCSlnstall Options dialog summarizes the ingallation. In our case, the total down-
load size will be 339MB. Click Next to start the download/installation process. The in-
stallation time will depend greatly on your download speed. When you are done with the
installation, do not start Code Composer ... we'll cover the startup and licensing issuesin
alater module.

Download and Install Workshop Lab and Solution Files

12. Click thefollowing link to be directed to the M SP430 LaunchPad Workshop download
Wiki and save the M SP430_L aunchPad_Workshop.exe file to your desktop:

http://software-dl.ti.com/trainingT TO/trainingTTO public sw/MSP430 LaunchPad Wo
rkshop/MSP430 LaunchPad Workshop.exe

13. Double-click the MSP430 LaunchPad Workshop.exefileto install the labs and solutions
for thisworkshop. Onceinstalled, you can delete the installation file from the desktop.
The workshop fileswill beinstalled in C:\M SP430_L aunchPad and the directory
structure is as follows:

= ) M5P430_LaunchPad
=l | Labs

# ) Lab2Z
# ) Lab3
+ ) Lab4
# ) Labs
# () Labd
# () Lab7
& ) Labd

+ | ) Lab10a

# |3 Lab10b

# | Lab10c
=l [ Solutions
+ ) Lah2
I Lab3
I Lab4
I Labs
| Labs
| Lab7
| Lab&

| Lab10oc

| wWorkspace

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1-13


http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/MSP430_LaunchPad_Workshop/MSP430_LaunchPad_Workshop.exe�
http://software-dl.ti.com/trainingTTO/trainingTTO_public_sw/MSP430_LaunchPad_Workshop/MSP430_LaunchPad_Workshop.exe�

Lab 1: Download Software and Setup Hardware

Download Supporting Documents and Software

14. Windows7 no longer has HyperTerminal. To regain that capability, download and
“install” TeralTerm or another terminal program of your choice.

15. Next, download and save the following documents and software to your computer:

e LaunchPad User’s Guide: http://www.ti.com/lit/slau318
e MSP430x2xx User’s Guide: http://www.ti.com/lit/slaul44
e CCompiler User's Guide http://www.ti.com/lit/slaul32
o MSP430G2xx code examples: http://www.ti.comV/lit/zip/d ac463
e Temperature demo source and GUI: http://www.ti.com/lit/zip/slac435

e A copy of the workshop workbook pdf: http://www.ti.com/launchpad-workshop

Additional information: www.ti.com/launchpadwiki
www.ti.com/launchpad
www.ti.com/captouch

Third Party Websites
16. There are many, many third party M SP430 websites out there. A couple of good ones are:

http://www.j oesbytes.com
http://www.mspoh.com

1-14 Getting Started with the MSP430 LaunchPad - Introduction to Value Line


http://www.ayera.com/teraterm/�
http://www.ti.com/lit/slau318�
http://www.ti.com/lit/slau144�
http://www.ti.com/lit/slau132�
http://www.ti.com/lit/zip/slac463a�
http://www.ti.com/lit/zip/slac435�
http://www.ti.com/launchpad-workshop�
http://www.ti.com/launchpadwiki�
http://www.ti.com/launchpad�
http://www.ti.com/captouch�
http://www.joesbytes.com/�
http://www.mspoh.com/�

Lab 1: Download Software and Setup Hardware

MSP-EXP430G2 LaunchPad Experimenter Board

The MSP-EXP430G2 is alow-cost experimenter board, also known as LaunchPad. It
provides a complete devel opment environment that features integrated USB-based emulation
and al of the hardware and software necessary to develop applications for the M SP430G2xx
Vaue Line series devices.

17. Look on the side of your LaunchPad kit and find the revision number. At the time this
workshop was written, version 1.5 isthe current version. The stepsin this workshop will
cover both the 1.4 and 1.5 revisions.

Open the MSP430 LaunchPad kit box and inspect the contents. The kit includes:
e LaunchPad emulator socket board (M SP-EXP430G2)
e Mini USB-B cable

e IntheRevison 1.5Kkit...
A M SP430G2553 (pre-installed and pre-loaded with demo program) and
a M SP430G2452

e IntheRevison 1.4 Kkit...
A M SP430G2231 (pre-installed and pre-loaded with demo program) and
aMSP430G2211

e IntheRevison 1.5Kkit...
10-pin PCB connectors are soldered to the board and two female also
included

e IntheRevison 1.4Kkit...
Two male and two female 10-pin PCB connectors

e 32.768 kHz micro crystal

e Quick start guide and two LaunchPad stickers

Hardware Setup

The LaunchPad experimenter board includes a pre-programmed M SP430 device whichis
aready located in the target socket. When the LaunchPad is connected to your PC via USB,
the demo starts with an LED toggle sequence. The on-board emulator generates the supply
voltage and al of the signals necessary to start the demo.

18. Connect the M SP430 LaunchPad to your PC using the included USB cable. The driver
installation starts automatically. If prompted for software, allow Windowsto install the
software automatically.

19. At this point, the on-board red and green LEDs should toggle back and forth. Thislets us
know that the hardware is working and has been set up correctly.

Getting Started with the MSP430 LaunchPad - Introduction to Value Line 1-15



Lab 1: Download Software and Setup Hardware

Running the Application Demo Program

The pre-programmed application demo takes temperature measurements using the internal
temperature sensor. This demo exercises the various on-chip peripherals of the MSP430
device and can transmit the temperature via UART to the PC for display.

20.

21

22

23.

24,

25.

Press button P1.3 (lower-left) to switch the application to the temperature measurement
mode. A temperature referenceis taken at the beginning of this mode and the LEDs on
the LaunchPad signal arise or fall in temperature by varying the brightness of the on-
board red LED for warmer or green LED for colder.

Rub your fingertip on your pants to warm it up and place it on the top of the MSP430
device on the LaunchPad board. After afew seconds the red Led should start to light,
indicating a temperature rise. When the red LED is solidly lit, remove your finger and
press button P1.3 again. Thiswill set the temperature reference at the higher temperature.
Asthe part cools, the green LED will light, indicating decreasing temperature. Bear in
mind that ambient temperatures will affect this exercise.

Next we will be using the GUI to display the temperature readings on the PC. Be sure
that you have installed the downloaded GUI source files (LaunchPad_Temp_GUI.zip).

Determine the COM port used for the board by clicking (in Windows XP) Start 2 Run
then type devmgmt.msc in the box and select OK. (In Windows 7, just type
devmgmt.msc into the Sear ch programs and files box)

In the Device Manager window that opens, left-click the symbol left of
Ports (COM & LPT) and record the COM port number for
M SP430 Applications UART (COMxx): . Close the Device Manager.

Start the GUI by clicking on LaunchPad_Temp_GUI.exe. Thisfileisfound under
<Install Directory>\LaunchPad_Temp_GUNapplication.window. Y ou may have to select
Run in the “Open File — Security Warning” window.

It will take afew seconds for the GUI to start. Be sure that the M SP430 application is
running (i.e. button P1.3 has been pressed). In the GUI, select the COM port found in
step 16 and press Enter (thisisaDOS window, your mouse will not work init). The
current temperate should be displayed. Try increasing and decreasing the temperature on
the device and natice the display reading changes. Note that the internal temperature
sensor is not calibrated, so the reading displayed will not be accurate. We are just
looking for the temperature values to change.

Close the temperature GUI .

ST

You're done.

Getting Started with the MSP430 LaunchPad - Introduction to Value Line



Code Composer Studio

Introduction

This module will cover abasic introduction to Code Composer Studio. Inthelab exercise we
show how a project is created and loaded into the flash memory on the M SP430 device.

Additionally, as an optiona exercise we will provide details for soldering the crystal on the
LaunchPad.

Intr cti

Co ompos udio
Initialization and GPIO
Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization
Serial Communications
Grace
FRAM
I: Capacitive Touc

12

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2-1



Module Topics

Module Topics

L0700 L @0 4] 0015 S U o |0 TS 2-1
7T LU = 0] o =S 2-2
(0010 LN 001010707 = g (1o (1o T 2-3
(= T2 @00 (=X @) o0 1S = G 11 [ o 2-7

(o= ot £ 2-7
0o o 1= ST PSR TS 2-8
Optional Lab Exercise — Crystal OSCHIAON..........coiiiiieiere et 2-14
[0 o 1= ot =TV 2-14
0 101= o 1= TSP 2-14

Getting Started with the MSP430 LaunchPad - Code Composer Studio



Code Composer Studio

Code Composer Studio

What is Code Composer Studio?

*

Integrated development environment for Tl embedded processors
= Includes debugger, compiler, editor, simulator, 0S...
The IDE is built on the Eclipse open source software framework
= Extended by Tl to support device capabilities
¢ CCSVS is based on “off the shelf” Eclipse (version 3.7 in CCS 5.1)
= Future CCS versions will use unmodified versions of Eclipse
Tl contributes changes directly to the open source community

Drop in Eclipse plug-ins from other vendors or take Tl tools and drop them
into an existing Eclipse environment

Users can take advantage of all the latest improvements in Eclipse

¢ Integrate additional tools
OS application development tools (Linux, Android...)
Code analysis, source control...

4 Linux support soon

. Code Composer™ Studio

¢ Low cost! $445 or $495

User Interface Modes...

User Interface Modes

¢ Simple Mode
= By default CCS will open in simple/basic mode
= Simplified user interface with far fewer menu items, toolbar buttons
= Tl supplied Edit and Debug Perspectives
4 Advanced Mode
= Uses default Eclipse perspectives
= Very similar to what exists in CCSv4
= Recommended for users who will be integrating other Eclipse based
tools into CCS
¢ Possible to switch Modes

= Users can decide that they are ready to move from simple to advanced
mode or vice versa

Common Tasks...

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2-3



Code Composer Studio

Common tasks

¢ Creating New Projects
Very simple to create a new project for a device using a template
¢ Build options

Many users have difficulty using the build options dialog and find it
overwhelming

Updates to options are delivered via compiler releases and not
dependent on CCS updates

¢ Sharing projects

Easy for users to share projects, including working with version
control (portable projects)

Setting up linked resources has been simplified

Workspaces and Projects ...
13

Workspaces and Projects

Workspace Project Source files
Project 1 Link | sourcefiles Code and Data
Project 2 Header files Header ﬁleS
Project3 Library files Declarations/Defines
Settings and preferences Build and tool settings | = =
- Library files
Code and Data
A workspace contains A proljjeqltdcon(tjamsl
your settings and Jotlings, as well as
preferences, as well as links tgo VOur inbut
links to your projects. files y P
Deleting projects from " ;
the wor%gpajce deletes Deleting files from the
the links, not the files workspace deletes the
' links, not the files
Project Wizard...

16

Getting Started with the MSP430 LaunchPad - Code Composer Studio



Code Composer Studio

Project Wi d
¥ New CCS Project L ]
€CS Project 7

c e CCS Prcject. /
Project name:  HelloWord
Outpus type | Executabie
7] Use delauit locston
~ [Mspaz0nis -
b Advanced setting:
et
forth
et
7 Finih =
—

Add Files...

17

[ Project Explorer 12| =

Adding Files to Projects

& 7 = 0| [g heloc 2

it
ET New
5 Copy

Paste

R Delete
o

Move.

Rename...

Import.
EBxpott...

G E

Build Project
Clean Project

Refresh

Close Project
'Add Files to Project... T
Debug As )
Team
Compare With

Restore from Local History...

Source »
Refactor »
Run C/C++ Code Analysis

Show Build Settings... 7 o
AlteEnter

Properties

# Add Files to Project allows
users to control how the file
is added to the project

4 Linking Files using built-in
macros allows easy creation
of portable projects

IAR Kickstart...

18

Getting Started with the MSP430 LaunchPad - Code Composer Studio



Code Composer Studio

IAR Kickstart

# IAR Embedded Workbench IDE [ [=1E3]
I e i Pyt it Toala | Warwtiess

DeH@ & & I - suEe e WHe D
[ * [F 1 - x
[Detug = &
(Fies & | voia masnpvoia =

S @Lab3 - Debug " pse Init():

|- G Companents BSP_TURN_ON_LED2();

| FaBbspe . -

| tbsph while (1)
[ bsp_macros h {

e @Source

| & [ mainc

| L& Bvio_Libransd3

L@ 3 Output

BSP_TOGGLE_LED1 () ;

o 4kB Compiler L
¢ Supports all MSP430 variants

¢ Assembler/Linker = :
+ Editor
¢ Debugger

2-6 Getting Started with the MSP430 LaunchPad - Code Composer Studio



Lab 2: Code Composer Studio

Lab 2: Code Composer Studio

Objective

The objective of thislab isto learn the basic features of Code Composer Studio. In this exercise

you will create a new project, build the code, and program the on-chip flash on the MSP430
device. An optiona exercise will provide details for soldering the crystal on the LaunchPad.

*Lab
*Re-create temperature sense demo

*Program part and test
*Close Grace pane

*Optional
» Add microcrystal to board
» Program part to test crystal

Lab2: Code Composer Studio

S dpTexas R
INSTRUMENTS o

7 ler
(B Wy
LaunchPad -

20

Getting Started with the MSP430 LaunchPad - Code Composer Studio



Lab 2: Code Composer Studio

Procedure

Note: CCS5.1 should have aready been installed during the Labl exercise.

Start Code Composer Studio and Open a Workspace

1. Start Code Composer Studio (CCS) by double clicking the icon on the desktop or
selecting it from the Windows Start menu. When CCS loads, a dialog box will prompt
you for the location of aworkspace folder. Browse to:

C:\M SP430_L aunchPad\Wor k Space and do not check the “Use this asthe default ...”
checkbox. Click OK.

Select a workspace |

| Code Composer Studic steres your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: C\MSP430_LaunchPad\WorkSpace -

[] Use this as the default and do not ask again

[ QK ] I Cancel l

Thisfolder contains all CCS custom settings, which includes project settings and views
when CCS s closed, so that the same projects and settings will be available when CCSis
opened again. It aso containsalist of your current projects. The workspace is saved
automatically when CCSiis closed.

Getting Started with the MSP430 LaunchPad - Code Composer Studio



Lab 2: Code Composer Studio

2. Thefirst time CCS opens, the “License Setup Wizard” should appear. In case you started
CCS hefore and made the wrong choices, you can open the wizard by clickingHel p >
Code Conposer Studio Licensing Information thenclick the Upgr ade
tab and the Launch Li cense Setup...

w« License Setup Wizard

Select a license option

Select one of the following license options:

) ACTIVATE
- Select this if you have an activation code, license file or license server

) EXTENSION - Your current license has expired. Choose this option to extend the
Code Composer Studio Evaluation period for 90 more days.
(Note: This can only be performed once, Internet Access is required.)

") FREE LICENSE - for use with
- XD5100 JTAG ernulators
- Onboard emulators on EVMs/DSKs/Stellaris/eZdsp/MAVRK development kits. Does not support eZ430.
- Linux/Android Application Development using GDB
- Simulators

@ CODE SIZE LIMITED (MSP430)
- Free 16KB code size limited tools for MSP430

{2} = Back Blext > [ Finich 1 [ Cancel ]

If you' re planning on working with the LaunchPad and value-line parts only, the
CODE Sl ZE LI M TED version of Code Composer with its 16kB code size limit will
fully support every chip in the family.

If you are attending another workshop in conjunction with this one, like the Stellarisware
workshop, you'll need to select the FREE LI CENSE version. Thisversion is free when
connected to certain boards, but not the LaunchPad board. When not connected to those
boards, you will have 30 days to evaluate the tool, but you can extend that period by 90

days.

Assuming that you' re only attending the LaunchPad workshop, select the
CCODE Sl ZE LI M TED radio button and click Fi ni sh.

Y ou can change your CCS license at any time by following the steps above.

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2-9



Lab 2: Code Composer Studio

3. You should now seetheopen TI Resour ce Expl or er tab openin Code Composer.

The Resource Explorer provides easy access to code examples, support and Grace™.
Grace™ will be cover in alater module. Click the X in the tab to close the Resour ce
Expl orer.

At this point you should see an empty CCS workbench. The term workbench refersto
the desktop development environment. Maximize CCSto fill your screen.

+'; CCS Edit - Code Composer Studia P o S
R — o
File Edit View Navigate Project Run Scripts Window Help

i~ g i G £ [ECEEdR)

[ Project Beplorer 2| B & ¥ = O =)
[2 Problems &3 =]
0items

Description ° Resource Path Location Type
M Licensed

The workbench will open in the“CCS Edit” view. Natice the tab in the upper right-hand
corner. A perspective defines the initial layout views of the workbench windows,
toolbars, and menus which are appropriate for a specific type of task (i.e. code
development or debugging). This minimizes clutter to the user interface. The“CCS
Edit” perspectiveisused to create or build C/C++ projects. A “CCS Debug” perspective
will automatically be enabled when the debug session is started. This perspectiveis used
for debugging your projects. Y ou can customize the perspectives and save as many as
you like.

Getting Started with the MSP430 LaunchPad - Code Composer Studio



Lab 2: Code Composer Studio

Create a New Project

5. A project contains al the files you will need to develop an executabl e output file (.out)
which can be run on the MSP430 hardware. To create a new project click:

File > New - CCS Project

Make the selections shown below (your dialog may ook slightly different than this one).
If you are using the M SP430G2231, make the appropriate choices for that part. Make
sureto click Enpty Proj ect, and then click Fi ni sh.

% New CCS Project (=03

CCS Project —£*=

Create a new CCS Project.

Project name: | Temperature_sense_Demo |

Output type: | Executable w |

[ use default location

Location: |C:‘\I'~15P430_LaunchPad'd.abs‘\LabE'\PrDject—TS | [ Browse... ]
Device
Famly:  [msp430 |
Variant: | 2253 L | |MSP-13062253 v|
Connection: |TI M5P430 USEL [Default] v|

b Advanced settings

w Project templates and examples

| Creates an empty project fully initialized for
the selected device.

= E Empty Projects ~
=Y Empty Project

E Empty Assembly-only Project
E Empty RTSC Project

[ Empty Grace (MSP430) Project
Basic Examples

= o

|zt Blink The LED

e

| Hello world

H =] Grace Framnlze -

m
fii]

i
<

@

6. Code Composer will add the named project to your workspace and display it in the
Proj ect Expl orer pane. For your convenience, it will also add afile called main.c
and open it for editing. Click on Tenper at ur e_Sense_Deno in the Project Explorer
pane to make the project active.

& CCS Edit - Temperature_Sense_demo/main.c - Code Composer Studio
File Edit View Mavigate Project Run  Scripts  Window Help

-t~ R i P iE G
[ Project Explorer 52 = G==g'> ¥ = 0| [@ main.c 5

B Includes ain.c
|g# Ink_msp430g2553.cmd
@ main.c

[&] MSP430G2553.coxml [Active /Default]

void main (void) |

[T T !

1 e

}

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2-11



Lab 2: Code Composer Studio

Source Files

7. Next, wewill add code to main.c. Rather than create a new program, we will use the
original source code that was preprogrammed into the M SP430 device (i.e. the program
used in Labl).

Click File = Open Fil e..and navigateto
C.\ M5P430_LaunchPad\ Labs\ Lab2\ Fi |l es.

Open the Temperature _Sense Demo.txt file. Copy and paste its contentsinto
mai n. ¢, erasing the original contents of mai n. c, then close the
Temperature_Sense Demo.txt file. Near the top of the file, note the statement
#i ncl ude “nmsp43092553. h”

If you are using an earlier revision of the board, change this statement to:
#i ncl ude “nmsp4309g2231. h”

Be sure to save main.c by clicking the Save button S inthe upper left.

Build and Load the Project

8. CCS can automatically save modified source files, build the program, open the debug
perspective view, connect and download it to the target (flash device), and then run the
program to the beginning of the main function.

Click onthe“Debug” button %

Notice the Debug icon in the upper right-hand corner indicating that we are now in the
“CCS Debug” view. Click and drag the perspective tabs to the left until you can see all
of both tabs. The program ran through the C-environment initialization routine in the
runtime support library and stopped at main() function in main.c.

2-12 Getting Started with the MSP430 LaunchPad - Code Composer Studio



Lab 2: Code Composer Studio

Debug Environment

9. Thebasic buttons that control the debug environment are located in the top of the Debug
pane. If you ever accidentally close the pane, your Debug controls will vanish. They can
be brought back by clicking View - Debug on the menu bar.

3% Debug 52 O (] @ | 2 333 R -8 e~ —0

= e Temperature_sense_Demo [Code Composer Studio - Device Debugging]
=@ TIMSP430 USE1/MSP430 (Suspended)
= main{) at main.c:34 0xF00
= _int00_noexit]) 0xFCI0 {the entry point was reached)

Hover over each button to seeits function.

10. At this point your code should be at the beginning of main(). Look for asmall blue arrow
left of the opening brace of main() in the middle window. The blue arrow indicates where

the Program Counter (PC) is pointing to. Click the Resume button U¥ o run the code.
Notice the red and green LEDs are toggling, as they did before.

11. Click Suspend . The code should stop somewhere in the PreA pplicationMode()
function.

12. Next single-step . (Step Into) the code once and it will enter the timer ISR for
toggling the LEDs. Single-step afew more times (you can aso press the F5 key) and
notice that the red and green LEDs alternate on and off.

13. Click Reset CPU R and you should be back at the beginning of main().

Terminate Debug Session and Close Project

14. TheTer m nat e button will terminate the active debug session, close the debugger and
return CCS to the *CCS Edit” view. Click the Ter ni nat e button: ™

15. Next, close the project by right-clicking on Tenper at ur e_Sense_Deno in the
Proj ect Expl orer window and select Cl ose Proj ect.

Getting Started with the MSP430 LaunchPad - Code Composer Studio 2-13



Optional Lab Exercise — Crystal Oscillator

Optional Lab Exercise — Crystal Oscillator

Objective

The MSP430 LaunchPad kit includes an optional 32.768 kHz clock crystal that can be soldered
on the board. The board as-is allows signal lines XIN and XOUT to be used as multipurpose
I/0s. Oncethe crysta is soldered in place, these lineswill be adigital frequency input. Please
note that thisis a ddlicate procedure since you will be soldering avery small surface mount
device with leads 0.5mm apart on to the L aunchPad.

The crystal was not pre-soldered on the board because these devices have a very low humber of
general purpose I/O pinsavailable. This gives the user more flexibility when it comes to the
functionality of the board directly out of the box. It should be noted that there are two 0 ohms
resistors (R28 and R29) that extend the crystal pin leads to the single-in-line break out connector
(J2). In case of oscillator signal distortion which leadsto afault indication at the basic clock
modul e, these resistors can be used to disconnect connector J2 from the oscillating lines.

Procedure

Solder Crystal Oscillator to LaunchPad

1. Very carefully solder the included clock crystal to the LaunchPad board. The crystal
leads provides the orientation. They are bent in such away that only one position will
have the leads on the pads for soldering. Be careful not to bridge the pads. The small size
makes it extremely difficult to manage and move the crystal around efficiently so you
may want to use tweezers and tape to arranging it on the board. Be sure the leads make
contact with the pads. 'Y ou might need a magnifying deviceto insurethat it islined up
correctly. You will need to solder the leads to the two small pads, and the end opposite
of the leadsto the larger pad.

Click thislink to see how one user soldered his crystal to the board:

http://justi nstech.org/2010/07/msp430-launchpad-dev-kit-how-too/

Getting Started with the MSP430 LaunchPad - Code Composer Studio


http://justinstech.org/2010/07/msp430-launchpad-dev-kit-how-too/�

Optional Lab Exercise — Crystal Oscillator

Verify Crystal is Operational

2. Createanew project by clickingFi | e = New - CCS Proj ect and then make the

selections shown below. Again, if you are using the MSP430G2231, make the proper
choices. Click Finish.

- - [o]x]|

CCS Project §

Create a new CCS Project.

Project name: | Verify_Crystal
Output type: |Executable ~

[JUse default location

Location: | C:\M5P430_LaunchPad\Labs'Lab2\Project-vC
Device
Family: M5P430 v
Variant: 2553 w | |M5P430G2553
Connection: | TI M5P430 USE1 [Default] L

» Advanced settings

w Project templates and examples

Creates an empty project fully initialized for
= the selected device.
=| Empty Projects -
+r Empty Project
= Empty Assembly-only Project
= Empty RTSC Project
£ Empty Grace (M3P430) Project
=I-||=| Basic Examples
&t Blink The LED
= Helo World

# =l Grace Fvamnlea

P

Click File = Open Fil e..and navigateto
C:\ M5P430_LaunchPad\ Labs\ Lab2\ Fi | es.

Open the Verify Crystal.txt file. Copy and paste its contentsinto main.c, erasing al the
previous contents of main.c. Then closethe Verify Crystal.txt file—it isno longer
needed.

If you are using the MSP430G2231, find the #i ncl ude <nmsp430g2553. h>
statement near the top of the code and replace it with #i ncl ude <nsp430g2231. h>
Save your changes to main.c.

Click the “Debug” button ¥ The“CCS Debug” view should open, the program will
load automatically, and you should now be at the start of Mai n() .

Run the code. If the crystal isinstalled correctly the red LED will blink slowly. (It
should not blink quickly). If the red LED blinks quickly, you’' ve probably either failed to
get a good connection between the crysta lead and the pad, or you' ve created a solder
bridge and shorted the leads. A good magnifying glass will help you find the problem.

Getting Started with the MSP430 LaunchPad - Code Composer Studio



Optional Lab Exercise — Crystal Oscillator

Terminate Debug Session and Close Project

7. Terminate the active debug session using the Ter m nat e button & Thiswill close
the debugger and return CCSto the “CCS Edit” view.

8. Next, close the project by right-clickingon Ver i fy_Crystal inthePr oj ect
Expl or er paneand select Cl ose Proj ect.

ST

You're done.

2-16 Getting Started with the MSP430 LaunchPad - Code Composer Studio



Initialization and GPIO

Introduction

This module will cover the steps required for initialization and working with the GPIO. Topics
will include describing the reset process, examining the various clock options, and handling the

watchdog timer. In the lab exercise you will write initialization code and experiment with the
clock system.

Intr cti
Co ompos udio
Initialization and GPIO
Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization
Serial Communications
Grace
FRAM
I: Capacitive Touc

Reset State ...
21

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-1



Module Topics

Module Topics

EaTRAE= 1= A To g TR= T o I 1 T 31
7T LU = 0] o =S 3-2
R = L= (Lo g I o H €1 [ N 3-3

Reset and SOftWare INitiali ZALION.........c.eiicee ettt et s s s s b e s sare s saressaree s 3-3
Lo Tox S = 34
F2xx - NO Crystal ReqUITed - DCO ......cceiiiieiiereceeereciese s s e e see et e e esaeseeseesresneenenneensenes 3-4
Run Time Calibration Of tE VL O ...ttt ettt e s et e e e s saaee s s sabeeeean 3-5
SYSLEM MCLK & VCC ..ttt sttt ettt st b e b e e b e s e e sae e sae e saeebeebeeabesaresaeesbeenrean 35
LUATE= e aTo (T I T o 1= SO STRRR 3-6
Lab 3: INitialiZation and GPlO........ooo ittt e e e e s et e s s et ae e s sarae s sebbnesssbeeesaanes 3-7
(O o 1= ot [ =SOSR 3-7
PIOCEOUIE........eeie ettt e ettt e e et e e e s et e e e s et be e s eaaaees s bbeessasbaeesassaesssbbeessanbesesansanessbenesaas 3-8

3-2 Getting Started with the MSP430 LaunchPad - Initialization and GPIO



Initialization and GPIO

Initialization and GPIO

Reset and Software Initialization

System State at Reset

¢ At power-up (PUC), the brownout circuitry holds device in reset until
Ve is above hysteresis point

RST/NMI pin is configured as reset

I/O pins are configured as inputs

Clocks are configured

Peripheral modules and registers are initialized (see user guide for
specifics)

Status register (SR) is reset

Watchdog timer powers up active in watchdog mode

¢ Program counter (PC) is loaded with address contained at reset vector
location (OFFFEhR). If the reset vector content is OFFFFh, the device will
be disabled for minimum power consumption

* ¢ 40

+* o

S/W nit ...
2

Software Initialization

After a system reset the software must:

< Initialize the stack pointer (SP), usually to the top of
RAM

¢ Reconfigure clocks (if desired)

+ Initialize the watchdog timer to the requirements of
the application, usually OFF for debugging

¢ Configure peripheral modules

Clock System ...

23

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-3



Initialization and GPIO

Clock System

Clock System

¢ Very Low Power/Low Frequency VLO
Oscillator (VLO)*
& 4 — 20kHz (typical 12kHz) Min. Puls ' ACLK
Filter Peripherals

¢ 500nA standby
¢ 0.5%/ C and 4%/Volt drift

¢ Not in '21x1 devices 0SC_Faul oLk
# Crystal oscillator (LFXT1) T > e

¢ Programmable capacitors
¢ Failsafe OSC_Fault

« Minimum pulse filter 13"432 ?ﬁﬁ,ﬁims
¢ Digitally Controlled Oscillator
(DCO) On PUC, MCLK and SMCLK are
¢ 0-to-16MHz sourced from DCOCLK at ~1.1 MHz.

0 ACLK is sourced from LFXT1CLK in
¢ +3% tOIerajnce_ ) LF mode with an internal load

¢ Factory calibration in Flash capacitance of 6pF. If LFXT1 fails,
ACLK defaults to VLO.

* Not on all devices. Check the datasheet DCO ...
24

G2xxx - No Crystal Required - DCO
G2xxx - No Crystal Required DCO

DCO Calibration Data (provided from factory in flash info memory segment A)
DCO Frequency Calibration Register Size Address
1 MHz CALBC1_1MHz byte 010FFh
CALDCO_1MHz byte 010FEh
8 MHz CALBC1_8MHz byte 010FDh
CALDCO_8MHz byte 010FCh
12 MHz CALBC1_12MHz byte 010FBh
CALDCO_12MHz byte 010FAh
16 MHz CALBC1_16MHz byte 010F9h
CALDCO_16MHz byte 010F8h
// Setting the DCO to IMHzZ
if (CALBCl_lMHZ ==0xFF || CALDCO_lMHZ == O0XFF)
while (1) ; // Erased calibration data? Trap!
BCSCTL1 = CALBCl_1MHZ; // Set range
DCOCTL = CALDCO_l1MHZ; // Set DCO step + modulation

& G2xx1 devices have 1TMHz DCO constants only. Higher frequencies must be
manually calibrated

& G2xx2 & G2xx3 (like the G2553) have all 4 constants + calibration values for the
ADC & temperature sensor

VLOCAL ...
5

3-4 Getting Started with the MSP430 LaunchPad - Initialization and GPIO



Initialization and GPIO

Run Time Calibration of the VLO

Calibrated 1 MHz DCO

Run Time Calibration of the VLO

TAR

= 8MHz/Counts

fVLO

I I — CCRx

ACLK/8 from VLO

Calibrate the VLO during runtime

Clock Timer_A runs on calibrated 1IMHz DCO
Capture with rising edge of ACLK/8 from VLO
fyLo = 8MHz/Counts

Code library on the web (SLAA340)

L R R R R 4

MCLK & Vce ...

26

System MCLK & Vcc

System MCLK & Vcc

Legend:

16 MHz

12 MHz 5 '/%

7/

6 MHz

System Frequency -MHz

T 000

1.8V 22V 27V 33V 36V

Supply Voltage -V

Supply voltage range
during flash memory
programming

Supply voltage range,
during program execution

4 External LDO regulator required

@ All G2xxx device operate up to 16 MHz

4 Match needed clock speed with required Vec to achieve the lowest power

# Unreliable execution results if \Vce < the minimum required for the selected frequency

WDT failsafe ...

27

Getting Started with the MSP430 LaunchPad - Initialization and GPIO



Initialization and GPIO

Watchdog Timer

source = MCLK

¢ If ACLK / SMCLK fail, clock

(WDT+ fail safe feature)

¢ If MCLK is sourced from a
crystal, and the crystal
fails, MCLK = DCO
(XTAL fail safe feature)

SMCLK—| T

Watchdog Timer Failsafe Operation

16-bit
Counter

Fail-Safe
Logic

ACLK—» 1

WDTSSEL A EN WDTHOLD

WDT clock source ...
28

WDTCTL (16-

Bit)

WDTHOLD

WDTNMIES

Watchdog Timer Clock Source

L,

WDTNMI

WDTTMSEL

\ 4

WDTCNTCL

WDTSSEL

I

Clock
Request
Logic

—» MCLK Active

——» SMCLK Active

—» ACLK Active

WDTIS1

WDTISO

¢ Active clock source cannot be disabled (WDT mode)
¢ May affect LPMx behavior & current consumption
¢ WDT(+) always powers up active

Lab ...

29

Getting Started with the MSP430 LaunchPad - Initialization and GPIO




Lab 3: Initialization and GPIO

Lab 3: Initialization and GPIO

Objective

The objective of thislab isto learn about steps used to perform the initialization process on the
MSP430 Value Line devices. In this exercise you will writeinitialization code and run the device
using various clock resources.

Lab3: Initialization

» Write initialization code

* Run CPU on MCLK sourced by:
- VLO
» 32768 crystal
+DCO

* Program part

» Observe LED flash speed

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-7



Lab 3: Initialization and GPIO

Procedure

Create a New Project

1. Create anew project by clicking:
File > New - CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the M SP430G2231, make the appropriate choices for that part. Make
sureto click Enpty Pr oj ect , and then click Fi ni sh.

% New CCS Project

CCS Project ) T
Create a new CCS Project. i

Project name: | Lab3 |

Qutput type: |Executable

v
[Juse default location
Location: |C:'-MSF‘430_Laun-:hF‘ad'\,Lal:-s'n,l.abS'Prc-ject | ’_ Browse ]
Device
Famiy:  |msPaz0 v/
Variant: | 2553 ~ | | Msp430G2553 v|
Connection: |'I'I MSP430 USE1 [Default] " |

b Advanced settings

w Project templates and examples

| type filter text | Creates an empty project fully initialized for
the selected device.

E\--- Empty Projects

----- E Empty Project

: E Empty Assembly-only Project

[ Empty RTSC Project

[ Empty Grace (M5P430) Project

B-" Basic Examples

[ Blink The LED b

-G Hello World
#-=] frare Evamnles

|

® < Back Next = L Finish ] [ Cancel

Getting Started with the MSP430 LaunchPad - Initialization and GPIO



Lab 3: Initialization and GPIO

Source File

2. Inthe main.c editing window, replace the existing code with the following code. Again, if
you are using the M SP430G2231, use that include header file. The short #ifdef structure
corrects an inconsi stency between the 2231 and 2553 header files. This inconsistency
should be corrected in future rel eases. Rather than typing all the following code, you can
feel freeto cut and paste it from the workbook pdf file.

#include <nmsp43092553. h>

#ifndef TI MERO_Al VECTOR

#define TI MERO_Al VECTOR TI MERA1_VECTOR
#define TI MERO_AO VECTOR TI MERAO_VECTOR
#endif

void main(void)

{

/| code goes here

Running the CPU on the VLO

We will initially start thislab exercise by running the CPU on the VLO. Thisisthe slowest clock
which runs at about 12 kHz. So, we will visualize it by blinking the red LED slowly at arate of
about once every 3 seconds. We could have let the clock system default to this state, but instead
we'll set it specifically to operate onthe VLO. Thiswill alow usto changeit later in the
exercise. Wewon't be using any ALCK clocked peripheralsin thislab exercise, but you should
recognize that the ACLK isbeing sourced by the VLO.

3. Inorder to understand the following steps, you need to have the following two resources
at hand:
e MSP430G2553.h header file— search your drive for the me p430g2553. h
header file and open it (or me p430g2231. h). Thisfile containsall the register
and bit definitions for the M SP430 device that we are using.

e MSP430G2xx User’s Guide — this document (slaul44h) was downloaded in
Labl. Thisisthe User’s Guide for the MPS430 Value Line family. Open the
.pdf file for viewing.

4. For debugging purposes, it would be handy to stop the watchdog timer. Thisway we
need not worry about it. In main.c right at type:
WDTCTL = WDTPW + WDTHOLD;

(Be sure not to forget the semicolon at the end).

The WDTCTL isthe watchdog timer control register. Thisinstruction sets the password
(WDTPW and the bit to stop the timer (WDTHOLD). Look at the header file and User’s
Guide to understand how thisworks. (Please be sure to do this—thisiswhy we asked
you to open the header file and document).

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-9



Lab 3: Initialization and GPIO

Next, we need to configure the LED that’s connected to the GPIO line. The green LED
islocated on Port 1 Bit 6 and we need to make this an output. The LED turns on when
the output isset toa“1”. We'll clear it to turn the LED off. Leave alinefor spacing and
type the next two lines of code.

P1DIR 0x40;
P10UT = O;

(Again, check the header file and User’ s Guide to make sure you understand the
concepts).

Now we'll set up the clock system. Enter anew line, then type:
BCSCTL3 |= LFXT1S 2;

The BCSCTL3 isone of the Basic Clock System Control registers. In the User’s Guide,
section 5.3 tells us that the reset state of the register is 005h. Check the bit fields of this
register and notice that those settings are for a 32768 Hz crystal on LFXT1 with 6pF
capacitors and the oscillator fault condition set. This condition would be set anyway
since the crystal would not have time to start up before the clock system faulted it.
Crystal start-up times can be in the hundreds of milliseconds.

The operator in the statement logically OR's LFXT1S_2 (which is 020h) into the
exigting bits, resulting in 025h. This setsbits4 & 5 to 10b, enabling the VL O clock.
Check thiswith the documents.

The clock system will force the MCLK to use the DCOas its source in the presence of a
clock fault (see the User’s Guide section 5.2.7). So we need to clear that fault flag. On
the next line type:

IFG1 &= ~OFIFG;

Thel FGL isInterrupt Flag register 1. A bit field in the register is the Oscillator Fault
Interrupt Flag - OFI FG (thefirst letterisan “O”, and not a zero). Logically ANDing

I FGL with the NOT of OFI FG(whichis2) will clear bit 1. Check thisin section 5 of
the User’s Guide and in the header file.

We need to wait about 50 us for the clock fault system to react. Running on the 12kHz
VLO, stopping the DCO will buy usthat time. On the next linetype:

_bis_SR register(SCG1 + SCGO);

SRisthe Status Register. Find the bit definitions for the status register in the User’s
Guide (section 4). Find the definitions for SCG0 and SCGL in the header file and notice
how they match the bit fields to turn off the system clock generator in the register. By the
way, the underscore before bis definesthis is an assembly level call from C. _bisisahit
set operation known as an intrinsic.

Thereisadivider in the MCLK clock tree. We will use divide-by-eight. Typethis
statement on the next line and ook up its meaning:

BCSCTL2 |= SELM_3 + DIVM_3;

The operator logically ORs the two values with the existing value in the register.
Examine these bits in the User’ s Guide and header file.

Getting Started with the MSP430 LaunchPad - Initialization and GPIO



Lab 3: Initialization and GPIO

10. At this point, your code should look like the code below. We have added the comments
to make it easier to read and understand. Click the Save button on the menu bar to save
thefile.

#include "nsp4309g2553.h"

#ifndef TI MERO_Al VECTOR

#define TI MERO_Al VECTOR TI MERA1_VECTOR
#define TI MERO_AO0_ VECTOR TI MERAO_VECTOR
#endif

void main(void)

{
WDTCTL = WDTPW + WDTHOLD; /1 watchdog tiner setup
P1DI R = 0x40; /1 1/0 setup
P1OUT = 0;
BCSCTL3 | = LFXT1S 2; /'l clock system setup
| FGL &= ~OFI FG
_bis SR register(SCGL + SCQX);
BCSCTL2 | = SELM 3 + DI VM 3;
}

11. Just one more thing — the last piece of the puzzle isto toggle the green LED. Leave
another line for spacing and enter the following code:

while(1)
P10UT = 0x40; // LED on
_delay_cycles(100);
P10UT = 0; // LED off

_delay_cycles(5000);
}

The P1OUT instruction was aready explained. The delay statements are built-in intrinsic
function for generating delays. The only parameter needed is the number of clock cycles
for the delay. Later in the workshop we will find out that thisisn’t a very good way to
generate delays — so don't get used to using it. The while(1) loop repeats the next four
lines forever.

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-11



Lab 3: Initialization and GPIO

12. Now, the complete code should look like the following. Be sure to save your work.

#include "nsp430g2553. h"
#ifndef Tl MERO_Al1_VECTOR
#define Tl MERO_Al1_VECTOR TI MERAL_VECTOR
#define TI MERO_AO_VECTOR TI MERAO_VECTOR
#endif
void main(void)
{
WDTCTL = WDTPW + WDTHOLD; /1 watchdog tiner setup
P1DI R = 0x40; /1 110 setup
P1OUT = O0;
BCSCTL3 | = LFXT1S 2; /'l clock system setup
| FGL &= ~OFI FG
_bis SR _register(SCGL + SCQR));
BCSCTL2 | = SELM 3 + DI VM 3;
while(1)
P1OUT = 0x40; /1 LED on
_del ay_cycl es(100);
P1OUT = O0; /1 LED of f
_del ay_cycl es(5000);
}
}

Great job! You could have just cut and pasted the code from VLO.txt in the Files folder,
but what fun would that have been? ©

13. Click the“Debug” button ¥ . The*“CCS Debug” view should open, the program will
load automatically, and you should now be at the start of mai n() .

14. Runthe code. If everything isworking correctly the green LED should be blinking about
once every three seconds. Running the CPU on the other clock sources will speed this up
considerably. Thiswill be covered in the remainder of the lab exercise. When done, halt
the code.

15. Click onthe Ter mi nat e button ™ to stop debugging and return to the “ CCS Edit”
perspective. Save your work by clickingFi | e &> Save As and select the parent
folder asLab3. Namethefile Lab3a.c. Click OK. Close the Lab3a.c editor tab and
double click on main.c in the Project Explorer pane. Unfortunately, Eclipse has added
Lab3a.c to our project, which will cause us grief later on. Right-click on Lab3a.c in the
Project Explorer pane and select Resour ce Configur ations, then Exclude from build...
Check both boxes and click OK.

3-12 Getting Started with the MSP430 LaunchPad - Initialization and GPIO



Lab 3: Initialization and GPIO

Note: If you have decided NOT to solder the crystal on to LaunchPad, then skip to the
“Running the CPU on the DCO without a Crystal” section. But, you should
reconsider; asthisisimportant information to learn.

Running the CPU on the Crystal

The crystal frequency is 32768 Hz, about three times faster than the VLO. If we run the previous
code using the crystal, the green LED should blink at about once per second. Do you know why
32768 Hz isastandard? It is because that number is 2*°, making it easy to use asimple digital
counting circuit to get a once per second rate — perfect for watches and other time keeping.
Recognize that we will aso be sourcing the ACLK with the crystal.

16. This part of the lab exercise uses the previous code as the starting point. We will start at
the top of the code and will be using both LEDs. Make both LED pins (P1.0 and P1.6)

outputs by
Changing: P1DIR = 0x40;
To: P1DIR = 0x41;

And we also want the red LED (P1.0) to start out ON, so

Change: P10OUT = 0;
To: P10UT = 0x01;
17. We need to select the external crystal as the low-frequency clock input.
Change: BCSCTL3 |= LFXT1S 2;
To: BCSCTL3 |= LFXT1S 0 + XCAP_3;

Check the User’s Guide to make sure thisis correct. The XCAP_3 parameter selectsthe
12pF load capacitors. A higher load capacitance is needed for lower frequency crystals.

18. In the previous code we cleared the OSCFault flag and went on with our business, since
the clock system would default to the VLO anyway. Now we want to make sure that the
flag stays cleared, meaning that the crystal isup and running. Thiswill require aloop
with atest. Modify the code to

Change: IFG1 &= ~OFIFG;
To: while(1IFG1 & OFIFG)

IFG1 &= ~OFIFG;
_delay_cycles(100000);

The statement while(1FG1 & OFIFG) teststhe OFIFG in the IFG1 register. If that
fault flag is clear we will exit the loop. We need to wait 50 us after clearing the flag until
wetest it again. The _delay_cycles(100000) ; is much longer than that. We need it
to be that long so we can see thered LED light at the beginning of the code. Otherwise it
would flash so quickly that we wouldn’t be able to seeit.

19. Finally, we need to add aline of code to turn off the red LED, indicating that the fault test
has been passed. Add the new line after the while loop:

P10OUT = O;

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-13



Lab 3: Initialization and GPIO

20. Since we made alot of changes to the code (and had a chance to make afew errors),

check to see that your code looks like:

#include "nmsp43092553. h"

#ifndef TI MERO_A1_VECTOR
#define TIMERO_AL VECTOR  TI MERAL_VECTOR
#define TIMERO_AO_VECTOR  TI MERAO_VECTOR

#endif
void main(void)
{
WDTCTL = WDTPW + WDTHOLD; /1 watchdog timer setup
P1DI R = 0x41; /1 110 setup
P1OUT = 0x01,
BCSCTL3 | = LFXT1S 0 + XCAP_3; /1 clock system setup
while(l FGL & OFI FG /1 wait for OSCFault to clear
| FGL &= ~OFl FG
_del ay_cycl es(100000);
}
P1OUT = O; /1 both LEDs off
_bis SR register(SCGL + SCX)); /1 clock system setup
BCSCTL2 | = SELM 3 + DI VM 3;
while(1)
P1OUT = 0x40; /1 LED on
_del ay_cycl es(100);
P1OUT = O; /1 LED off
_del ay_cycl es(5000);
}
}
Again, you could have cut and pasted from XT.txt, but you're hereto learn. ©
21. Click the“Debug” button % .The“CCS Debug” view should open, the program will
load automatically, and you should now be at the start of mai n() .
22. Look closdly at the LEDs on the LaunchPad and Run the code. If everything isworking

correctly, the red LED should flash very quickly (the time spent in the delay and waiting
for the crystal to start) and then the green LED should blink every second or so. That's
about three times the rate it was blinking before due to the higher crystal frequency.

When done, halt the code by clicking the suspend button

Getting Started with the MSP430 LaunchPad - Initialization and GPIO




Lab 3: Initialization and GPIO

23. Click on the Ter ni nat e button ® to stop debugging and return to the “ CCS Edit”
perspective. Save your work by clicking Fi | e > Save As and select the parent
folder asLab3. Namethefile Lab3b.c and click OK. Make sure to exclude Lab3b.c
from the build. Close the Lab3b editor tab and double click on main.c in the Project
Explorer pane.

Running the CPU on the DCO and the Crystal

The slowest frequency that we can run the DCO is about IMHz (thisis also the default speed).
So we will get started switching the MCLK over to the DCO. In most systems, you will want the
ACLK torun either onthe VLO or the 32768 Hz crystal. Since ACLK in our current codeis
running on the crystal, we will leave it that way and just turn on and caibrate the DCO.

24. We could just let the DCO run, but let’s calibrate it. Right after the code that stops the
watchdog timer, add the following code:

it (CALBC1_1MHZ ==OxFF || CALDCO_IMHZ == OxFF)

while(1); // 1T cal constants erased, trap CPU!!

BCSCTL1 = CALBC1_1MHZ; // Set range
DCOCTL = CALDCO_1MHZ; // Set DCO step + modulation

Notice the trap here. It is possible to erase the segment A of the information flash
memory. Blank flash memory reads as OxFF. Plugging OxFF into the calibration of the
DCO would be area mistake. Y ou might want to implement something similar in your
own fault handling code.

25. We need to comment out the line that stopsthe DCO. Comment out the following line:
// __bis SR register(SCGl + SCGO);

26. Finally, we need to make sure that MCLK is sourced by the DCO.

Change: BCSCTL2 |= SELM_3 + DIVM_3;
To: BCSCTL2 |= SELM_O + DIVM_3;

Double check the bit selection with the User’ s Guide and header file.

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-15




Lab 3: Initialization and GPIO

27. The code should now look like:

#include "nsp430g2553.h"

#ifndef TI MERO_A1_VECTOR
#define TIMERO_A1L_VECTOR  TI MERAL_VECTOR
#define TIMERO_AO_VECTOR  TI MERAO_VECTOR

#endif
void main(void)
{
WDTCTL = WDTPW + WDTHOLD; /1 watchdog tiner setup
if (CALBCl_1MHZ ==0xFF || CALDCO 1MHZ == OxFF)
while(1); /1 1f cal constants erased,
} [l trap CPU!
BCSCTL1 = CALBCl_ 1MHZ; /1l Set range
DCOCTL = CALDCO_1MHz; /1 Set DCO step + nodul ation
P1DI R = 0x41; /1 110 setup
P1OUT = 0x01;
BCSCTL3 | = LFXT1S 0 + XCAP_3; /1 clock system setup
while(l FGL & OFI FG /1 wait for OSCFault to clear
| FGl &= ~OFI FG
_del ay_cycl es(100000) ;
}
P1OUT = O; /1 both LEDs off
/1 _bis SR register(SCGL + SCQ0); /'l clock system setup
BCSCTL2 | = SELM 0 + DI VM 3;
while(1)
P1OUT = 0x40; /1 LED on
_del ay_cycl es(100);
P1OUT = 0; /1 LED off
_del ay_cycl es(5000);
}
}

The code can be found in DCO_XT.txt, if needed.

28. Click the“Debug” button % .The“CCS Debug” view should open, the program will
load automatically, and you should now be at the start of mai n() .

Getting Started with the MSP430 LaunchPad - Initialization and GPIO




Lab 3: Initialization and GPIO

29. Look closdly at the LEDs on the LaunchPad and Run the code. If everything isworking
correctly, thered LED should be flash very quickly (the time spent in the delay and
waiting for the crystal to start) and the green LED should blink very quickly. The DCO
isrunning at IMHz, which is about 33 times faster than the 32768 Hz crystal. So the
green LED should be blinking at about 30 times per second.

30. ClicktheTermi nate ® putton to stop debugging and return to the “ CCS Edit”
perspective. Save your work by clicking Fi | e - Save As and select the parent
folder asLab3. Namethefile Lab3c.c. Click OK. Make sure to exclude Lab3c.c from
the build. Close the Lab3c.c editor tab and double click on main.c in the Project Explorer
pane.

Optimized Code Running the CPU on the DCO and the Crystal

The previous code was not optimized, but very useful for educational value. Now we'll look at
an optimized version. Delete the code from your main.c editor window (click anywherein the
text, Ctrl-A, then delete). Copy and paste the code from OPT_XT.txt into main.c. Examinethe
code and you should recognize how everything works. A function has been added that
consolidates the fault issue, removes the delays and tightens up the code. Build, load, and run as
before. The code should work just as before. If you would like to test the fault function, short the
XIN and XOUT pins with ajumper before clicking the Run button. That will guarantee afault
from the crystal. You will have to power cycle the LaunchPad to reset the fault.

Click onthe Ter mi nat e button ® to stop debugging and return to the “ CCS Edit”
perspective. Save your work by clicking Fi | e = Save As and select the parent folder as
Lab3. Namethefile Lab3d.c. Click OK. Make sure to exclude Lab3d.c from the build. Close the
Lab3d.c editor tab.

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-17



Lab 3: Initialization and GPIO

Running the CPU on the DCO without a Crystal

The lowest frequency that we can run the DCO is IMHz. So we will get started switching the
MCLK over tothe DCO. In most systems, you will want the ACLK to run either onthe VLO or
the 32768 Hz crystal. Since ACLK in our current code is running on the VLO, we will leave it
that way and just turn on and calibrate the DCO.

31. Double-click on main.c in the Project Explorer pane. Delete adl the code from the file
(Ctrl-A, Delete). Copy and paste the code from your previously saved Lab3a.c into
main.c.

32. We could just let the DCO run, but let’s calibrate it. Right after the code that stops the
watchdog timer, add the following code:

if (CALBCl_1MHZ ==OxFF || CALDCO 1MHZ == OxFF)
while(1l); /1 1f cal constants erased,
} /1 trap CPU!
BCSCTL1 = CALBCl1 1MHz; /1l Set range
DCOCTL = CALDCO 1MHZ; /1 Set DCO step + nodul ation

Notice the trap here. It is possible to erase the segment A of the information flash
memory that holds the calibration constants. Blank flash memory reads as OxFF.
Plugging OxFF into the calibration of the DCO would be areal mistake. Y ou might want
to implement something similar in your own fault handling code.

33. We need to comment out the line that stopsthe DCO. Comment out the following line:
// __bis SR register(SCGl + SCGO);

34. Finally, we need to make sure that MCLK is sourced by the DCO.

Change: BCSCTL2 |= SELM_3 + DIVM_3:
To: BCSCTL2 |= SELM_O + DIVM_3;

Double check the bit selection with the User’ s Guide and header file. Save your work.

3-18 Getting Started with the MSP430 LaunchPad - Initialization and GPIO



Lab 3: Initialization and GPIO

35. The code should now look like:

#include "nmsp430g2553. h"

#ifndef TI MERO_Al VECTOR

#define TI MERO_Al VECTOR TI MERAL_VECTOR
#define TI MERO_AO0_ VECTOR TI MERAO_VECTOR
#endif

void main(void)
{
WDTCTL = WDTPW + WDTHOLD; /1 watchdog tiner setup

if (CALBCL_1MHZ ==OxFF || CALDCO 1MHZ == OxFF)

while(1); /1 1f cal constants erased,
} /1 trap CPU!
BCSCTL1 = CALBCl_ 1MHZ; /1l Set range
DCOCTL = CALDCO_1MHz; /1 Set DCO step + nodul ation
P1DI R = 0x40; /1 110 setup
P1OUT = 0;
BCSCTL3 | = LFXT1S 2 + XCAP_3; /1 clock system setup

| FGL &= ~OFI FG
/1 bis SR register(SCGL + SCQ0);
BCSCTL2 |= SELM 0 + DI VM 3;

while(1)
P1OUT = 0x40; /1 LED on
_del ay_cycl es(100);
P1OUT = O; /1 LED off

_del ay_cycl es(5000);
}

The code can be found in DCO_VLO.txt, if needed.

36. Click the“Debug” button ¥ . The*CCS Debug” view should open, the program will
load automatically, and you should now be at the start of mai n() .

37. Runthe code. If everything isworking correctly, the green LED should blink very
quickly. With the DCO running at IMHz, which is about 30 times faster than the 32768
Hz crystal. So the green LED should be blinking at about 30 times per second. When
done halt the code.

38. Click onthe Ter mi nat e button ® to stop debugging and return to the “ CCS Edit”
perspective. Save your work by clicking Fi | e - Save As and select the parent
folder asLab3. Namethefile Lab3e.c. Click OK. Make sure to exclude Lab3e.c from
the build. Close the Lab3e.c editor tab and double click on main.c in the Project Explorer
pane.

Getting Started with the MSP430 LaunchPad - Initialization and GPIO 3-19



Lab 3: Initialization and GPIO

Optimized Code Running the CPU on the DCO and VLO

Thisis amore optimized version of the previous step’s code. Delete the code from your main.c
editor window (click anywhere in the text, Ctrl-A, then delete). Copy and paste the code from
OPT_VLO.txt into main.c. Examine the code and you should recognize how everything works.
A function has been added that consolidates the fault issue, removes the delays and tightens up
the code. Build, load, and run as before. The code should work just as before. Thereisno real
way to test the fault function, short of erasing the information segment A Flash —and let’s not do
that ... okay?.

Click onthe Ter ni nat e button ® to stop debugging and return to the “ CCS Edit”
perspective. Save your work by clicking Fi | e > Save As and select the parent folder as
Lab3. Namethefile Lab3f.c. Click OK and then close the L ab3f.c editor pane. Make sureto
exclude Lab3f.c from the build.

Right-click on Lab3 in the Project Explorer pane and select Cl ose Pr oj ect.

ST

You're done.

Getting Started with the MSP430 LaunchPad - Initialization and GPIO



Analog-to-Digital Converter

Introduction

This module will cover the basic details of the MSP430 Vaue Line anal og-to-digital converter.

In the lab exercise you will write the necessary code to configure and run the converter.

Introducti
Co ompos udio
Initialization and GPIO
[ Analog-to-Digital Converter |
Interrupts and the Timer
Low-Power Optimization
Serial Communications
Grace
FRAM
: Capacitive Touc

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter



Module Topics

Module Topics

ANalOg-1O-Digital CONVENTEN ....c.eceeieeee ettt e e st st saesre e e ese e e et e seesaesresneereeneeneenes 4-1
7T LU = 0] o =S 4-2

PN gtz ToTo i (o Rl BT Ko ] = U @ g1V = SRR 4-3
Fast FIEXIDIE ADCLO ..ottt sttt b e st b e sttt be sttt e et st ne e e 4-3

1S 010 L= I3 o 4-4
Autoscan + DTC Performance BOOSE .........cuvurriririeinineese ettt 4-4

Lab 4: Analog-to-Digital CONMVEITEN ........ooiiiieieeeeieee ettt sb et b et sae b ene e e 4-5

(0 o 1= ot (=TSO RURRRSI 4-5
(o= o (U] = S 4-6

4-2 Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter



Analog-to-Digital Converter

Analog-to-Digital Converter

Fast Flexible ADC10

Fast Flexible ADC10
¢ 10-bit 8 channel SAR ADC
¢ 6 external channels
1.5V or 2.5V
¢ Vcc and internal temperature :|
¢ 200 kSpS+ Avss Avce
¢ Selectable conversion clock 7 v
¢ Autoscan Vi Ve
¢ Single S/H [ 10-bit SAR
¢ Sequence
) ADC10SC
¢ Repeat-single Rin 1
¢ Repeat-sequence - TA2
¢ Internal or External reference i | ittt >
5 g Batt Templi 1
¢ Timer-Atriggers ! A4 AT
, Flasn,
# Interrupt capable i rransrer I Peripherals | §
¢ Data Transfer Controller (DTC) \L Controller i} )
¢ Auto power-down
Sample Timing ...
32

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter 4-3



Analog-to-Digital Converter

Sample Timing

Sample Timing

% Reference must settle for <30uS
# Selectable hold time

@ 13 clock conversion process

% Selectable clock source

-ADC100SC (~5MHz)
-ACLK
MCLK e e

! ' '
- SMCLK

SHI _ll_\
| crociks
o _J — R e

syme
— — \ \ R — —\
ADCIOCLK / \ A \ \ [\ \ \ / \ /

Autoscanand DTC ...
3

Autoscan + DTC Performance Boost

Autoscan + DTC Performance Boost

o o ¢ Data2
--- § ' [Datal
- -4 Data0
pTC Data2
// Software // Autoscan + DTC
Res[pRes++] = ADC10MEM; _BIS SR(CPUCEF) ;
ADC10CTLO &= ~ENC;
if (pRes < NR CONV)
{ Fully Automatic

CurrINCH++;

if (CurrINCH == 3)
CurrINCH = 0;

ADC10CTL1 &= ~INCH 3;

ADC10CTL1 |= CurrINCH;

ADC10CTLO |= ENC+ADC1l0SC;

70 Cycles / Sample

Lab ...

4-4 Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter



Lab 4: Analog-to-Digital Converter

Lab 4: Analog-to-Digital Converter

Objective

The objective of thislab isto learn about the operation of the on-chip anal og-to-digital converter.
In this lab exercise you will write and examine the necessary code to run the converter. The
internal temperature sensor will be used as the input source.

Lab4: ADC

* Measure internal temperature
+ Set timing requirements
+ Additional CCS features

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter 4-5



Lab 4: Analog-to-Digital Converter

Procedure

Create a New Project

1. Create anew project by clicking:
File > New - CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the M SP430G2231, make the appropriate choices for that part. Make
sureto click Enpty Pr oj ect, and then click Fi ni sh.

% New CCS Project

CCS Project o

Create a new CCS Project. @

Project name: | Lab4 |

Qutput type: | Executable w |

[Juse default location

Location: |C:'J~’ISP—13D_LaunchPad'-Labs'd_ab—‘l'd:‘roject | ’ Browse... ]
Device
Famiy:  |MsP430 v|
Variant: | 2553 v | | MsP430G2553 v|
Connection; |'I'I MSP430 USE L [Default] vl

b Advanced settings

w Project templates and examples

Creates an empty project fully initialized for
the selected device,

= E Empty Projects
Yoty roect|
E Empty Assembly-only Project
[& Empty RTSC Project
[ Empty Grace (MSP430) Project
= E Basic Examples
[& glink The LED B
E Hello World

=
#-H=| farare Fvamnles

|

£

@ < Back ext Finish l [ Cancel

4-6 Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter



Lab 4: Analog-to-Digital Converter

Source File

Most coding efforts make extensive use of the " cut and paste” technique, or commonly known as
“codere-use’. The MSP430 family is probably more prone to the use of this technique than most
other processors. Thereisan extensive library of code example for al of the devicesin both
assembly and C. So, itisextremely likely that a piece of code exists somewhere which does
something similar to what we need to do. Additionally, it helpsthat many of the peripheralsin
the M SP430 devices have been deliberately mapped into the same register locations. In thislab
exercise we are going to re-use the code from the previous lab exercise along with some code
from the code libraries and demo examples.

1. We need to open the files containing the code that we will be using in this lab exercise.
Open thefollowing two filesusingFi l e - Open File...

o C:\MSP430_L aunchPad\L abs\L ab3\FilessOPT_VL O.txt

e C:\MSP430_LaunchPad\Labs\L ab2\Files\Temperature Sense Demo.txt

2. Copy dl of thecodein OPT_VLO t xt and pasteitintomai n. ¢, erasing al the
exiging codein mai n. ¢. Thiswill set up the clocks:

e ACLK=VLO
e MCLK =DCO/8 (1IMHz/8)
3. Next, make sure the SMCLK is aso set up:
Change: BCSCTL2 | = SELM O + DI VM 3;
To: BCSCTL2 | = SELMO + DIVM 3 + DI VS_3;

The SMCLK default from reset is sourced by the DCO and DIVS_3 sets the SMCLK
divider to 8. Theclock setupis:

e ACLK=VLO
« MCLK = DCO/8 (IMHz/8)
e SMCLK = DCO/8 (IMHz/8)

4. If you are using the M SP430G2231, make sure to make the appropriate change to the
header file include at the top of the code.

5. Asatest — build, load, and run the code. If everything isworking correctly the green
LED should blink very quickly. When done, halt the code and click the Ter m nat e

button ™ to return to the “ CCS Edit” perspective.

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter 4-7



Lab 4: Analog-to-Digital Converter

Set Up ADC Code

Next, we will re-use code from Tenper at ur e_Sense_Deno. t xt to set upthe ADC. This
demo code has the needed function for the setup.

6. FromTenper at ure_Sense_Denp. t xt copy thefirst four lines of code from the
Confi gur eAdcTempSensor () function and pasteit as the beginning of thewhi | e( 1)
loop, just above the PLOUT line. Those lines of code are:

ADC10CTL1 = I NCH 10 + ADC10DI V_3;

ADCL0CTLO = SREF_1 + ADCI0SHT_3 + REFON + ADCLOON + ADCLO0I E;
_del ay_cycl es(1000);

ADCL0CTLO | = ENC + ADC10SC;

7. We are going to examine these code lines one at the time to make sure they are doing
what we heed them to do. Y ou will need to open the User’s Guide and header file for
reference again. (It might be easier to keep the header file open in the editor for
reference).

First, change ADC10DIV_3to ADC10DIV_0.
ADC10CTL1 = INCH 10 + ADC10DI V_O;

ADCLOCTL1 isone of the ADC10 control registers. | NCH_10 selectsthe internal
temperature sensor input channel and ADC10DI V_0 selects divide-by-1 asthe ADC10
clock. Selection of the ADC clock is madein thisregister, and can be the internal
ADC100SC (5MHz), ACLK, MCLK or SMCLK. The ADC100SC is the default
oscillator after PUC. So we will use these settings.
ADC10CTLO = SREF_1 + ADCI1O0SHT_3 + REFON + ADCLOON + ADC10l E;
ADC10CTLO isthe other main ADC10 control register:

o SREF_1: sdlectstherange from Vg to Vger. (ideal for the temperature sensor)

e ADC10SHT_3: maximum sample-and-hold time (ideal for the temperature sensor)

o REFON: turns the reference generator on (must wait for it to settle after thisline)

e ADC10ON: turns on the ADC10 periphera

e ADC10I E: turns on the ADC10 interrupt — we do not want interrupts for thislab

exercise, so changethelineto:

ADC10CTLO = SREF_1 + ADC10SHT_3 + REFON + ADCLOON;

4-8 Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter



Lab 4: Analog-to-Digital Converter

The next line allowstime for the reference to settle. A delay loop is not the best way to
do this, but for the purposes of this lab exercise, it’sfine.

_del ay_cycl es(1000);

Note that the compiler will accept a single or double underscore.

Referring to the User’s Guide, the settling time for the internal referenceis< 30us. As
you may recall, the MCLK isrunning at DCO/8. Thatis IMHz/8 or 125 kHz. A value of
1000 cyclesis 8ms, which ismuch too long. A value of 5 cycleswould be 40us. Change
the delay time to that value:

_delay_cycl es(5);

Thenext line:

ADC10CTLO | = ENC + ADC10SC,

enables the conversion and starts the process from software. According to the user’s
guide, we should allow thirteen ADC10CLK cycles before we read the conversion result.
Thirteen cycles of the 5SMHz ADC10CLK is2.6us. Even asingle cycle of the DCO/8
would be longer than that. We will leave the LED on and use the same delay so that we
can see it with our eyes. Leave the next two lines aone:

P1OUT = 0x40;
_del ay_cycl es(100);

8. When the conversion is complete, the encoder and reference need to be turned off. The
ENC bit must be off in order to change the REF hit, so thisis atwo step process. Add the
following two linesright after thefirst __del ay_cycl es(100);

ADCLOCTLO &= ~ENC
ADCL0CTLO &= ~(REFON + ADCLOON);

9. Now theresult of the conversion can be read from ADCLOMEM Next, add the following
lineto read this value to atemporary location:

t enpRaw = ADC10MEM

Remember to declare thet enpRaw variable right after the #endi f line a the beginning
of the code:

vol atil e | ong tenpRaw,

Thevol ati | e modifier forces the compiler to generate code that actually reads the
ADC10MEMregister and placeit int enpRaw. Since we're not doing anything with

t empRaw right now, the compiler optimizer could decide to eliminate that line of code.
The volatile modifier prevents this from happening.

10. Thelast two lines of thewhi | e( 1) loop turn off the green LED and delays for the next
reading of the temperature sensor. Thistime could be amost any value, but we will use
about 1 second in between readings. MCLK isDCO/8is 125 kHz. Therefore, the delay
needs to be 125,000 cycles:

P1OQUT = 0;
_del ay_cycl es(125000) ;

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter 4-9



Lab 4: Analog-to-Digital Converter

11. At this point, your code should look like the code below. We have added the comments

to make it easier to read and understand. Click the Save button on the menu bar to save
thefile.

}

}

#i ncl ude <nmsp430g2553. h>
#i f ndef TIMERO_A1_VECTOR

#define TIMERO_AL_VECTOR Tl MERAL_VECTOR

#define TI MERO_AO_VECTOR TI MERAO_VECTOR
#endi f

volatile | ong tenpRaw,
voi d Faul t Routi ne(void);

voi d mai n(voi d)

{

whi | e(1)

voi d Faul t Routi ne(voi d)

WDTCTL = WDTPW + WDTHOLD; /1 Stop watchdog tiner

P1DI R = 0x41; /1 P1.0&6 outputs
P1QUT = 0; /1 LEDs off

i f (CALBCL_1MHZ ==OxFF || CALDCO 1MHZ == OxXFF)

Faul t Routi ne(); /1 If cal data is erased
/1 run Faul t Routine()
BCSCTL1 = CALBCl_1M1z; /'l Set range
DCOCTL = CALDCO_1MHzZ; /1 Set DCO step + nodul ation
BCSCTL3 | = LFXT1S 2; /]l LFEXT1 = VLO
I FGL &= ~CFI FG /1l Clear OSCFault flag

BCSCTL2 | = SELMO + DIVM 3 + DIVS 3; // MCLK = DCO 8

ADC10CTL1 = I NCH 10 + ADC10DI V_0; /'l Tenp Sensor ADCLOCLK
ADC10CTLO = SREF_1 + ADCLOSHT_3 + REFON + ADCLOON;

_del ay_cycl es(5); /1 Wait for ADC Ref to settle
ADC10CTLO | = ENC + ADC10SC; /1l Sanmpling & conversion start

P1OUT = 0x40;

/'l green LED on
_del ay_cycl es(100);

ADC10CTLO &= ~ENC,

ADC10CTLO &= ~( REFON + ADCLOQN);
t enpRaw = ADC10MEM

P1QUT = 0;

/1 green LED off
_del ay_cycl es(125000);

P1OUT = 0x01; /1 red LED on
whi l e(1); /| TRAP

Note: for reference, this code can found in Lab4.txt.

12. Closethe OPT_VLO. t xt and Tenper at ur e_Sense_Deno. t xt referencefiles.

They are no longer needed.

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter



Lab 4: Analog-to-Digital Converter

Build, Load, and Run the Code

13. Click the“Debug” button ¥ . The*"CCS Debug” perspective should open, the
program will load automatically, and you should now be at the start of mai n() .

14. Runthe code. If everything isworking correctly the green LED should be blinking about
once per second. Click Suspend to stop the code.

Test the ADC Conversion Process

15. Next we will test the ADC conversion process and make sure that it isworking. Inthe
codelinecontaining: t enpRaw = ADC1OMEM

double-click ont enpRawto select it. Then right-click on it and select Add Wat ch
Expr essi on then click OK. If needed, click on the Expr essi ons tab near the upper
right of the CCS screen to see the variable added to the watch window.

16. Right-click on the next line of code: P1OUT = 0;

and select Br eakpoi nt (Code Conposer Studi o) -> Breakpoi nt. When
we run the code, it will hit the breakpoint and stop, allowing the variable to be read and
updated in the watch window.

17. Make sure the Expr essi ons window is still visible and run the code. 1t will quickly
stop at the breakpoint and the t enpRaw value will be updated. Do thisafew times,
observing the value. (It might be easier to press F8 rather than click the Run button).
The reading should be pretty stable, although the lowest bit may toggle. A typica
reading is about 734 (that’s decimal), although your reading may be alittle different.

Y ou can right-click on the variable in the watch window and change the format to
hexadecimal, if that would be more interesting to you.

18. Just to the left of the PAOUT = 0; instruction you should see a symbol % indicating a
breakpoint has been set. It might be alittle hard to see with the Program Counter arrow in

the way. Right-click on the § symbol and select Br eakpoi nt Properties...
We can change the behavior of the breakpoint so that it will stop the code execution,
update our watch expression and resume execution automatically. Change the Act i on
parameter to Ref resh All W ndows as shown below and click OK.

& Breakpoint Properties

Properties Values
= Hardware Configuration
4 Type Simple
= Debugger Response
Condition
# Skip Count a
Action Refresh all windows
= Miscellaneous
Group Default Group
Mame Breakpoint

Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter 4-11



Lab 4: Analog-to-Digital Converter

19. Run the code. Warm your finger up, like you did in the Lab2 exercise, and put it on the
device. You should see the measured temperature climb, confirming that the ADC
conversion process is working. Every time the variable value changes, CCS will highlight

itinyellow.
Terminate Debug Session and Close Project

20. Terminate the active debug session using the Ter m nat e button B Thiswill close
the debugger and return CCSto the “CCS Edit” perspective.

21. Next, close the project by right-clicking on Lab4 inthe Pr oj ect Expl or er paneand
select Cl ose Proj ect.

ST

You're done.

4-12 Getting Started with the MSP430 LaunchPad - Analog-to-Digital Converter



Interrupts and the Timer

Introduction

This module will cover the details of the interrupts and the timer. In the lab exercise we will

configure the timer and alter the code to use interrupts.

Introducti
Co ompos udio
Initialization and GPIO
Analog-to-Digital Converter

| Interrupts and the Timer

Low-Power Optimization
Serial Communications
Grace
FRAM
: Capacitive Touc

Timer Architecture ...

Getting Started with the MSP430 LaunchPad - Interrupts and the Timer



Module Topics

Module Topics

INEErTUPLS AN the TIMEN ..ot e e et sresre s neere e e eneenes 51
7T LU = 0] o =S 5-2
TaL= N0 i TaTo I = 02 RS 5-3
TIMEr _A2/AB FEALUIES .....ccueceeieeeeeeeese st s e s e st ese e eteste s e s tesaeese e e esaesaentestesaeeseeseesaeneeseseeseensenseeneenennsn 5-3
INtErrUPLS AN the SEACK .....eveeecece e et ene e enee s 5-3

RV 2= (0 G 1= o TSRS 5-4

LS e o 1 0o SRR 5-4

Lab 5: Timer @na INEEITUDES.....coueiueeeeeeeie ettt et eae e et et bbbt e st e e e e e b e besbesbesneene e e eneas 5-5

(O o 1= ot (= SRR URRRRTI 55
L0 101= o LU= ST 5-6

5-2 Getting Started with the MSP430 LaunchPad - Interrupts and the Timer



Interrupts and the Timer

Interrupts and the Timer

Timer_A2/A3 Features

Timer_A2 and A3 Features

Stop/Halt Continuous
R Timer is haled Timer continuously counts up.
4 Asynchronous 16-bit
timer/counter
¢ Continuous, up-down,
up count modes
¢ 2or 3 capture/compare -
registers Up UpMDowm
Timer counts between 0 and CCRO Timer counts between 0 and CCRO and 0
¢ PWM outputs e
- Ccl
# Two interrupt vectors con
for fast decoding

Interrupts and Stack ...
7

Interrupts and the Stack

Interrupts and the Stack

Entering Interrupts
# Any currently executing instruction is completed
The PC, which points to the next instruction, is pushed onto the stack
The SR is pushed onto the stack
The interrupt with the highest priority is selected
The interrupt request flag resets automatically on single-source flags;
Multiple source flags remain set for servicing by software
¢ The SR is cleared; This terminates any low-power mode; Because the
GIE bitis cleared, further interrupts are disabled
# The content of the interrupt vector is loaded into the PC; the program
continues with the interrupt service routine at that address

*
*
*
*

Before After
Interrupt Interrupt
ltem1 ltem1
SP —» ltem2 TOS ltem2
PC
SP—» SR TOS
Vector Tahle ...

35

Getting Started with the MSP430 LaunchPad - Interrupts and the Timer 5-3



Interrupts and the Timer

Vector Table

MSP430G2553 Vector Table

Interrupt Source | Interrupt Flag System Word Priority
Interrupt Address

Power-up PORIFG
External Reset RSTIFG
Watchdog Timer+ WDTIFG Reset OFFFEh 31
Flash key violation KEYV (highest)
PC out-of-range
NMI NMIIFG Non-maskable
Oscillator Fault OFIFG Non-maskable OFFFCh 30
Flash memory access ACCVIFG Non-maskable
violation
Timerl_A3 TA1CCRO CCIFG maskable OFFFAh 29
Timerl_A3 TA1CCR2 TA1CCR1 maskable OFFF8h 28
CCIFG, TAIFG
Comparator_A+ CAIFG maskable OFFF6h 27
Watchdog Timer+ WDTIFG maskable OFFF4h 26
Timer0_A3 TAOCCRO CCIFG maskable OFFF2h 25
Timer0_A3 TAOCCR1 TAOCCR1 maskable OFFFOh 24
CCIFG TAIFG
USCI_AO0/USCI_BO receive UCAORXIFG, UCBORXIFG maskable OFFEEh 23
USCI_BO 12C status
USCI_AO0/USCI_BO transmit UCAOTXIFG, UCBOTXIFG maskable OFFECh 22
USCI_BO 12C receive/transmit
ADC10 ADC10IFG maskable OFFEAh 21
OFFE8h 20
1/0 Port P2 (up to 8) P2IFG.0to P2IFG.7 maskable OFFE6h 19
1/0 Port P1 (up to 8) P1IFG.0to P1IFG.7 maskable OFFE4h 18
OFFE2h 17
OFFEOh 16
Boot Strap Loader Security OFFDEh 15
Key
Unused OFFDEh to OFFCDh 14-0
ISR Coding ...
39
#pragma vect or =\WWDT_VECTOR
__interrupt void WDT_| SR(voi d)
|E1 & ~WDTI E; /] disable interrupt
| FGL &= ~WDTI FG /1 clear interrupt flag
WDTCTL = WDTPW + WDTHOLD; // put WDT back in hold state
BUTTON_I E | = BUTTQON, /'l Debouncing conpl ete
#pragma vector - the following function is an ISR for the listed vector
_interrupt void - identifies ISR name
No special return required
Lab...
40

5-4 Getting Started with the MSP430 LaunchPad - Interrupts and the Timer



Lab 5: Timer and Interrupts

Lab 5: Timer and Interrupts

Objective

The abjective of thislab isto learn about the operation of the on-chip timer and interrupts. In
lab exercise you will write code to configure the timer. Also, you will ater the code so that it
operates using interrupts.

Lab5: Timer and Interrupts

» Configure timer
« Alter code to operate using interrupts
* Build and test

41

this

Getting Started with the MSP430 LaunchPad - Interrupts and the Timer



Lab 5: Timer and Interrupts

Procedure

Create a New Project

1. Create anew project by clicking:
File > New - CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the M SP430G2231, make the appropriate choices for that part. Make
sureto click Enpty Pr oj ect, and then click Fi ni sh.

% New CCS Project X

CCS Project g
Create a new CCS Project.

Project name: | Labs |

Qutput type: | Executable w |

[Juse default location

Location: |C:'J~'15P-13D_LaunchF‘ad'd_abs'-LabS'-Project | [ Browse... ]
Device
Famiy: | MSP430 v
Variant: | 2553 v | | MsP430G2553 v|
Connection: | TI MSP430 USB1 [Defaul] v|

» Advanced settings

w Project templates and examples

| Creates an empty project fully initialized for
the selected device.

= E Empty Projects
B2y Empty Project
E Empty Assembly-anly Project
[& Empty RTSC Project
[ Empty Grace (MSP430) Project
il .
El-[{=| Basic Examples
[ Blink The LED n
=
|z Hello Waorld

=
[#--=| forare Fyamnlee

>

£

@ < Back ext Finish l l Cancel

5-6 Getting Started with the MSP430 LaunchPad - Interrupts and the Timer



Lab 5: Timer and Interrupts

Source File

The solution file from the last |ab exercise will be used as the starting point for this lab exercise.
We' ve cleaned up the file dightly to make it alittle more readable by putting the initialization
code into individual functions.

1. OpentheLab5_Start.txt fileusngFile - Open File...
e C:\MSP430_LaunchPad\Labs\L ab5\Files\Lab5 Start.txt

2. Copy dl of thecodeinLab5_ Start.txt andpasteitintonai n. ¢, erasing adl the
existing code in mai n. c. Thiswill be the starting point for thislab exercise.

3. ClosethelLab5_Start.txt file. Itisnolonger needed.

4. Asatest—build, load, and run the code. If everything isworking correctly the green
LED should be blinking about once per second and it should function exactly the same as
the previous lab exercise. When done, halt the code and click the Ter mi nat e button

® to return to the “ CCS Edit” perspective.

Using the Timer to Implement the Delay

5. Inthe next few steps we' re going to implement the one second delay that was previously
implemented using the delay intrinsic with the timer.

Find _del ay_cycl es(125000) ; and delete that line of code.

6. We need to add afunction to configure the Timer. Add adeclaration for this new
function to top of the code, underneath the one for ConfigADC10:

voi d Confi gTi mer A2(voi d);
Then add acall to the function underneath the call to ConfigADCA10;
Confi gTi mer A2() ;

And add atemplate for the function at the very bottom of the program:
voi d Confi gTi mer A2( voi d)
{

Getting Started with the MSP430 LaunchPad - Interrupts and the Timer 5-7



Lab 5: Timer and Interrupts

7.

Next, we need to populate the Conf i gTi mer A2() function with the code to configure
thetimer. We could take this from the example code, but it’s pretty simple, so let’s do it
ourselves. Add the following code asthefirst line:

CCTLO = CClE;

This enables the counter/compare register O interrupt in the CCTLO capture/compare
control register. Unlike the previous lab exercise, this one will be using interrupts. Next,
add the following two lines:

CCRO = 12000;
TACTL = TASSEL_1 + MC 2,

We'd liketo set up the timer to operate in continuous counting mode, sourced by the
ACLK (VLO), and generate an interrupt every second. Reference the User’s Guide and
header files and notice the following:

e TACTL isthe Timer_A control register
e TASSEL 1 selectsthe ACLK
e M2 sets the operation for continuous mode

When the timer reaches the value in CCRO, an interrupt will be generated. Sincethe
ACLK (VLO) isrunning at 12 kHz, the value needs to be 12000 cycles.

We have enabled the CCRO interrupt, but global interrupts need to be turned on in order
for the CPU to recognizeit. Right before the while(1) loop in main(), add the following:

_BIS SR(GE);

Create an Interrupt Sevice Routine (ISR)

0.

10.

11.

At this point we have set up theinterrupts. Now we need to create an Interrupt Service
Routine (ISR) that will run when the Timer interrupt fires. Add the following code
template to the very bottom of main.c:

#pragma vect or =TI MERO_AO_VECTOR
__interrupt void Tinmer_A (void)

{

}

These lines identify this asthe TIMER ISR code and allow the compiler to insert the
address of the start of this code in the interrupt vector table at the correct location. Look
it up inthe C Compiler User's Guide. This User’s Guide was downloaded in lab 1.

Remove all the code from inside the whi | e('1) loop in main() and paste it into the ISR
template. Thiswill leavethewhi | e(1) loop empty for the moment.

Almost everything isin place for the first interrupt to occur. In order for the 2™, 3¢,
4™ ... to occur at one second intervals, two things have to happen:

a) Theinterrupt flag hasto be cleared (that’s automatic)
b) CCRO hasto be set 12,000 cyclesinto the future

So add the following asthelast line in the ISR:
CCRO +=12000;

Getting Started with the MSP430 LaunchPad - Interrupts and the Timer



Lab 5: Timer and Interrupts

12. We need to have some code running to be interrupted. Thisisn't strictly necessary, but
the blinking LEDs will let us know that some part of the code is actually running. Add
the following code to thewhi | e( 1) loop:

PLOUT | = BI TO;

for (i =100; i > 0; i--);
P1QUT &= ~BI TO;
for (i =5000; i >0; i--);

This routine does not use any intrinsics. So when we' re debugging the interrupts, they
will look finein C rather than assembly. Don't forget to declarei at the top of main.c:

vol atile unsigned int i;

Modify Code in Functions and ISR
13. Let’s make some changes to the code for readability and LED function.

InFaul t Routi ne(),

e Change: P1OUT = 0x01;

e To: P1OUT = BI TO;
In Confi gLEDs(),

e Change: P1DI R = 0x41;

o« To: P1DIR = BIT6 + BI TO;
Inthe Timer ISR,

e Change: P1OUT = 0x40;

e To P1OUT | = BI T6;

and

e Change: P1OUT = 0;

e To: P1OQUT &= ~BI T6;

14. At this point, your code should look like the code on the next two pages. We' ve added
the comments to make it easier to read and understand. Click the Save button on the
menu bar to save thefile.

Getting Started with the MSP430 LaunchPad - Interrupts and the Timer 5-9



Lab 5: Timer and Interrupts

#i ncl ude <nmsp43092553. h>

#i f ndef TI MERO_Al VECTOR

#defi ne TI MERO_Al VECTOR Tl MERAL_VECTOR
#defi ne TI MERO_AO_VECTOR TI MERAO_VECTOR
#endi f

vol atil e | ong tenpRaw,
vol atile unsigned int i;

voi d Faul t Routi ne(void);
voi d Confi gWDT(voi d);

voi d Confi gC ocks(void);
voi d Confi gLEDs(void);
voi d Confi gADCLO(voi d);
voi d Confi gTi mer A2(void);

voi d mai n(voi d)

{
Confi gWDT() ;
Confi gd ocks();
Confi gLEDs() ;
Conf i gADC10() ;
Confi gTi mer A2() ;

_BIS SR(A E);
whi | e(1)
P1OUT | = BI TO;
for (i =100; i > 0; i--);
P1QUT &= ~BI TO;
for (i =5000; i >0; i--);
}
}
voi d Confi gWDT(voi d)
{
WDTCTL = WDTPW + WDTHOLD; /1 Stop watchdog tiner
}

voi d Confi gC ocks(voi d)

{
i f (CALBCL_1MHZ ==0xFF || CALDCO 1MHZ == OxFF)

Faul t Routi ne(); /1 1f calibration data is erased
/1 run Faul t Routine()

BCSCTL1 = CALBCl1 1MHz; /1 Set range

DCOCTL = CALDCO 1MHZ; /1 Set DCO step + nodul ation

BCSCTL3 | = LFXT1S_2; /1l LEXT1 = VLO

| FGL &= ~OFl FG /1 O ear OSCFault flag

BCSCTL2 |= SELMO + DIVM 3 + DIVS 3; // MCLK = DCO' 8, SMCLK = DCO 8

5-10 Getting Started with the MSP430 LaunchPad - Interrupts and the Timer



Lab 5: Timer and Interrupts

voi d Faul t Routi ne(voi d)

P1OUT = BI TO; /1 P1.0 on (red LED)
whi |l e(1); /'l TRAP
}
voi d Confi gLEDs(voi d)
P1DIR = BIT6 + BITO; /1 P1.6 and P1.0 outputs
P1OUT = O; /'l LEDs off
}
voi d Confi gADCLO( voi d)
ADC10CTL1 = I NCH 10 + ADC10DI V_0; /'l Tenmp Sensor ADCLlOCLK
}
voi d Confi gTi nmer A2(voi d)
CCTLO = CO E;
CCRO = 12000;
TACTL = TASSEL_1 + MC 2;
}

#pragma vect or =TI MERO_AO_VECTOR
__interrupt void Timer_A (void)

{
ADC10CTLO = SREF_1 + ADC10SHT_3 + REFON + ADCLOOQN;
_delay_cycl es(5); /1 Wait for ADC Ref to settle
ADCL10CTLO | = ENC + ADC10SC; /1 Sanpling and conversion start
P1OUT | = BI T6; /1 P1.6 on (green LED)
_del ay_cycl es(100);
ADC10CTLO &= ~ENC, /1 Di sabl e ADC conversi on
ADC10CTLO &= ~( REFON + ADCLOON); /'l Ref and ADC10 of f
t enpRaw = ADC10MEM /1 Read conversion val ue
P1OUT &= ~BI T6; /1 green LED off
CCRO +=12000; /1 add 12 seconds to the tiner
}

Note: for reference, the code can found in Lab5_Finish.txt in the Files folder.
Build, Load, and Run the Code

15. Click the“Debug” button ¥ . The*CCS Debug” view should open, the program will
load automatically, and you should now be at the start of mai n() .

16. Run the code and observe the LEDs. If everything isworking correctly, thered LED
should be blinking about twice per second. Thisisthe while(1) loop that the Timer is
interrupting. The green LED should be blinking about once per second. Thisisthe rate

that we are sampling the temperature sensor. Click Suspend to stop the code.

Getting Started with the MSP430 LaunchPad - Interrupts and the Timer 5-11



Lab 5: Timer and Interrupts

Test the Code

17. Make sure that thet enpRaw variableis il inthe Expr essi ons window. If not, then
double-click t enpRaw on the code linet enpRaw = ADCLOMEM to selectit. Then right-
click onitand select Add WAt ch Expressi on. and click OK. If needed, click on the
Expr essi ons tab near the upper right of the CCS screen to see the variable added to
the watch window.

18. Inthe Timer_A2 ISR, find the line with PAOUT &= ~BI T6; and place a breakpoint
there. Right-click on the breakpoint symbol and select Br eakpoi nt
Properties... Changethe Acti on parametertoRef resh Al W ndows as
shown below and click OK.

& Breakpoint Properties

Properties Values
=l Hardware Configuration
4 Type Simple
= Debugger Response
Condition
# Skip Count a
Action Refresh all windows
= Miscellansous
Group Default Group
Mame Breakpoint

19. Run the code. The debug window should quickly stop at the breakpoint and the
t enpRaw value will be updated. Observe the watch window and test the temperature
sensor asin the previous lab exercise.

Terminate Debug Session and Close Project

20. Terminate the active debug session using the Ter mi nat e B putton. Thiswill close
the debugger and return to the “ CCS Edit” view.

21. Close the project by right-clicking on Lab5inthe Pr oj ect Expl or er paneand
select Cl ose Proj ect.

ST

You're done.

5-12 Getting Started with the MSP430 LaunchPad - Interrupts and the Timer



Low-Power Optimization

Introduction

This module will explore low-power optimization. In the lab exercise we will show and
experiment with various ways of configuring the code for low-power optimization.

Intr cti

Co ompos udio
Initialization and GPIO
Analog-to-Digital Converter
Interrupts and the Timer
| Low-Power Optimization |
Serial Communications

Grace
FRAM

: Capacitive Touc

Low Power Modes ...
42

Getting Started with the MSP430 LaunchPad - Low-Power Optimization



Module Topics

Module Topics

L OW-POWEr OPtiMiZALION.......iiiiieeieeeeseses st ee e st s e ste et s e e e e e e s aestesresneeseeseenseseeseessessessesnnensenenns 6-1
7T LU = 0] o =S 6-2
[0 1LY o 1V B @ o) 4217 LA o) o 6-3

LOW-POWES IMOOES .....cveneeteiieiete sttt sttt sttt sttt st eb e st b e st b et be sttt sttt e e s 6-3
01V = 1LY/ @] o= 1o o 6-3
SYSIEM IMCLK & VCC ittt ettt rte st e s e sne e e e teeneesseesseesseenseesesneesneesnnenneenseennenns 6-5
TN LU DT o ST RRR 6-5
@ TUEs ol T T = 00T 7= 1) S 6-6
Lab 6: LOW-POWES IMOUES........ccueeiieiiece ettt sttt st s e st e s be e be et e eatesaaesteesteesteeneesneenans 6-7
(0 o 1= ot (= TSP RURTRSI 6-7
o= o (U] = S 6-8

6-2 Getting Started with the MSP430 LaunchPad - Low-Power Optimization



Low-Power Optimization

Low-Power Optimization

Low-Power Modes

Low-Power Modes
Mode CPU and Clocks
Active CPU active. All enabled clocks active
LPMO CPU, MCLK disabled. SMCLK, ACLK active
LPM1 CPU, MCLK disabled. DCO disabled if not used for
p— SMCLK. ACLK active
Resst Acie LPM2 | CPU, MCLK, SMCLK, DCO disabled. ACLK active
4 LPM3 | CPU, MCLK, SMCLK, DCO disabled. ACLK active
Tmo Exied Ovetow ) woTans | WOTIFa=0 LPM4 CPU and all clocks disabled
T RST/NMI is Reset Pin
WOTIFG=1_— WOT is Active
Sacurity Key Viclation -
.FmiveMm!s <
cpgg;; b Psnpnutrr:ulj.mie Active i
soat=0 N
LPhO :'/ ‘\:\ LPM4
; Y ACLK Off
CPUOFF=1 / / AN
scao=1 / ),’ CPUGFF = DC Generator Off
T oo | et
DCO off, SMCLK On, Off, DCO Off, ACLK On
ACLK On LPM2
CPU Off, MCLK Off, SMCLK’
DC Generator Off it DCO Off, DCO O, ACLK On DC Generator Off .
ot used for SMCLK - Operation ...
43
Low-Power Operation
Low-Power Operation
¢ Power-efficient MSP430 apps:
+ Minimize instantaneous current draw
+ Maximize time spent in low power modes
¢ The MSP430 is inherently low-power, but your
design has a big impact on power efficiency
¢ Proper low-power design techniques make the
difference
i MSP430 A ¥
32768 Always-on 230uA| : : : : \
=1 ACLK | b | 1 |
E low-power peripherals | : ' |
i On demand | : : |
N oco LA il | —
i CPU and peripherals TUA \‘ ¥
“Instant on” clock
Operation ...
44

Getting Started with the MSP430 LaunchPad - Low-Power Optimization



Low-Power Optimization

Low-Power Operation

4+ Power draw increases with...

+ Vcc

+ CPU clock speed (MCLK)
+ Temperature

¢ Slowing MCLK reduces instantaneous power, but
usually increases active duty cycle
+ Power savings can be nullified

¢ The ULP ‘sweet spot’ that maximizes performance for the
minimum current consumption per MIPS: 8 MMHz MCLK

¢ Full operating range (down to 2.2V)
+ Optimize core voltage for chosen MCLK speed

MCLK and Vce ...
45

Getting Started with the MSP430 LaunchPad - Low-Power Optimization



Low-Power Optimization

System MCLK & Vcc

6
"
I
T 12
L
g
c
@
g
o
g
'S
§ s
g
3
w

MHz

System MCLK & Vcc

7

MHz

MHz

Legend:

18V

22V

27V

Supply Voltage -V

33V 36V

-
|

Supply voltage range,
during flash memory
programming

Supply voltage range,
during program execution

4 External LDO regulator required
4 Unreliable execution results if Vec < the minimumrequired for the selected frequency
@ All G2xxx device operate up to 16 MIHz

4 Match needed clock speed with required Vcce to achieve the lowest power

Pin Muxing ..

46

Pin Muxing

Pin Muxing

Table 2 Terminal Functions

DESCRIPTION

Genera-purpose digital 10 pin
Timerd_. clock signal TACLK Irpal
ACLK Sgnaloslpsl
ADC10 anaiog input 40"

£1.5TAQOSCLCTMS Of 7

¢ Each pin has up to four functions
¢ Top selection (above) is default
¢ Register bits (below) select pin function

Table 18. Port P1 (P1.0 to P1.2) Pin Functions - MSP430G2x31

CONTROL BITS f SIGNALS
PN NAME (P1.x) x FUNCTION PIDIRX PISELX [‘I?g‘ufflﬁ
P1.0 P 0 (13 L] [
TADCLK TAD TACLK [] 1 o
ACLK! ® (Ao 1 1 [
A0 AD x 1y=0)

Unused pins..

P oo
& fpe1 &me vsoasamiTox

47

Getting Started with the MSP430 LaunchPad - Low-Power Optimization



Low-Power Optimization

Unused Pin Termination

Unused Pin Termination

+ Digital input pins subject to shoot-through current
¢ Input voltages between VIL and VIH cause shoot-through if
input is allowed to “float” (left unconnected)
¢ Port1/Os should
+ Driven as outputs
¢ Bedriven to Vcc or ground by an external device
+ Have a pull-up/down resistor

(Digital) CMOS Inverter
Vee

J Vel
-

[
L

Vin

Lab...

4a

6-6 Getting Started with the MSP430 LaunchPad - Low-Power Optimization



Lab 6: Low-Power Modes

Lab 6: Low-Power Modes

Objective

The objective of thislab isto learn various techniques for making use of the low-power modes.
We will start with the code from the previous lab exercise and reconfigure it for low-power
operation. Aswe modify the code, measurements will be taken to show the effect on power
consumption.

Lab6: Low-Power Modes

» Implement LPM3 during while(1) loop
+ Eliminate software delays
» Measure current draw (optional)

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6-7



Lab 6: Low-Power Modes

Procedure

Create a New Project

1. Create anew project by clicking:
File > New - CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the M SP430G2231, make the appropriate choices for that part. Make
sureto click Enpty Pr oj ect, and then click Fi ni sh.

& New CCS Project 3

CCS Project &%
Create a new CCS Project.

Project name: | Lab& |

Output type: |Executable w |

[Juse default location

Location: |C:'J~15P43D_LaunchF‘ad'-Labs'd_abé'.Project | [ Browse. .. l
Device
Famiy:  |MsP430 v
Variant: | 2553 v | [MsP43062553 |
Connection: | T1 MSP430 UsB1 [Default] v|

¥ Advanced settings

* Project templates and examples

| Creates an empty project fully initialized for
the selected device,

= E Empty Projects
= e

E Empty Assembly-only Project

[& Empty RTSC Project

[ Empty Grace (MSP430) Praject
[Z] Basic Examples

[& Blink The LED

[& Hella world

=
[H =l frare Fvamnles

|

m
I

£

@ < Back ext Finish ] [ Cancel

6-8 Getting Started with the MSP430 LaunchPad - Low-Power Optimization



Lab 6: Low-Power Modes

Source File
We'll use the solution file from the last |ab exercise as the starting point for thislab exercise.
1. OpenthelLab5_Fi ni sh. txt fileusngFile = Open File...
e C:\MSP430 _LaunchPad\L abs\L ab5\Files\Lab5 Finish.txt

2. Copy dl of thecodeinLab5_Fi ni sh. t xt and pasteitintomai n. ¢, erasingthe
original contents of mai n. c. Thiswill be the starting point for thislab exercise.

3. ClosethelLab5_Fi ni sh. t xt file. It'snolonger needed. If you are using the
M SP430G2231, make sure to make the appropriate change to the header file include at
the top of themai n. c.

Reconfigure the I/O for Low-Power

If you have adigital multimeter (DMM), you can make the following measurements; otherwise
you will have to take our word for it. The sampling rate of one second is probably too fast for
most DMMs to settle, so we'll extend that time to three seconds.

4. Find and change the following lines of code:

e InConfigTimerA2() :

Change: CCRO = 12000;

To: CCRO = 36000;
e IntheTimerISR:

Change: CCRO += 12000;

To: CCRO += 36000;

5. The current drawn by thered LED is going to throw off our current measurements, so
comment out the two P1OUT linesinside thewhi | e(1) loop.

6. Asatest — build, load, and run the code. If everything isworking correctly the green
LED should blink about once every three seconds. When done, halt the code and click

the Ter mi nat e button ® to return to the “CCS Edit” perspective.

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6-9



Lab 6: Low-Power Modes

Baseline Low-Power Measurements
7. Turn on your DMM and measure the voltage between Vcc and GND at header J6. You

should have avalue around 3.6 Vdc. Record your measurement here:

Build, load, and run the code. If everything isworking correctly the green LED should
blink about once every three seconds.

If you are interested in the state of the M SP430 registers, click:
View - Registers

Y ou can expand any of the peripheral registersto see how they each are set up. If you see
“Unableto read” in the Vaue column, try halting the code. The emulator cannot read
memory or registers while code is executing.

When you're done, click the Ter i nat e button to return to the “ CCS Edit” perspective.

Now we'll completely isolate the target area from the emulator, except for ground.
Remove all five jumpers on header J3 and put them aside where they won't get lost. Set
your DMM to measure pA. Connect the DMM red lead to the top (emulation side) Vcc
pin on header J3 and the DMM black lead to the bottom (target side) Vcc pin on header
J3. Pressthe Reset button on the LaunchPad board.

If your DMM has alow enough effective resistance, the green LED on the board will
flash normally and you will see areading on the DMM. If not, the resistance of your
meter istoo high. Oddly enough, we have found that low-cost DMMswork very well.
Y ou can find one on-line for less than US$5.

Now we can measure the current drawn by the M SP430 without including the LEDs and
emulation hardware. (Remember that if your DMM is connected and turned off, the
MSP430 will be off too). Thiswill be our baseline current reading. Measure the current
between the blinks of the green LED.

Y ou should have a value around 106 pA.

Record your measurement here:

Remove the meter leads and carefully replace the jumpers on header J3.

If you forget to replace the jumpers, Code Composer will not be able to connect to the
M SP430.

Getting Started with the MSP430 LaunchPad - Low-Power Optimization



Lab 6: Low-Power Modes

Configure Device Pins for Low-Power

We need to make sure that all of the device pins are configured to draw the lowest current
possible. Referring to the device datasheet and the LaunchPad board schematic, we notice that
Port1 defaultsto GPIO. Only P1.3is configured as an input to support push button switch S2,
and the rest are configured as outputs. P2.6 and P2.7 default to crystal inputs. We will configure

them as GPIO.
10. Renamethe Conf i gLEDs() function declaration, cal, and function name to
Confi gPins().
11. Delete the contents of the Conf i gPi ns() function and insert the following lines:
P1DIR = ~BI T3;
P1OUT = 0;

(Sending a zero to an input pin is meaningless).

12. There are two pins on Port2 that are shared with the crystal XIN and XOUT. Thislab
will not be using the crystal, so we need to set these pinsto be GPIO. The device
datasheet indicates that P2SEL bits 6 and 7 should be cleared to select GPIO. Add the
following code to the Conf i gPi ns() function:

P2SEL = ~(BIT6 + BIT7);
P2DIR | = BIT6 + BIT7;
P2OUT = 0;

13. At this point, your code should look like the code below. We've added the commentsto
make it easier to read and understand. Click the Save button on the menu bar to save the
file. The middleline of codewill result in a*“integer conversion resulted in truncation”
warning at compile time that you can ignore.

voi d Confi gPi ns(voi d)
{

P1DI R = ~BI T3; /1 P1.3 input, others output
P1OUT = O; /'l clear output pins
P2SEL = ~(BIT6 + BIT7); // P2.6 and 7 GPIO

P2DIR | = BIT6 + BIT7; /] P2.6 and 7 outputs
P20UT = 0; /1 clear output pins

}

14. Now build, load and run the code. Make sure the green LED blinks once every three
seconds. Click theTer m nat e button to return to the “CCS Edit” perspective.

15. Next, remove all the jumpers on header J3 and connect your meter leads. Press the Reset
button on the LaunchPad board and measure the current between the blinks of the green
LED.

Y ou should have a value around 106 pA.

Record your measurement here:

No real savings here, but there is not much happening on this board to cause any issues.

Remove the meter leads and carefully replace the jumpers on header J3.

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6-11



Lab 6: Low-Power Modes

MSP430G2553 Current Consumption

The current consumption of the M SP430G2553 |ooks something like the graph below (ignoring
the LED). The graphisnot to scalein either axisand our code departs from thistiming
somewhat. With the CPU active, 106 pA is being consumed al thetime. The current needed for
the ADC10 reference is 250 pA, and ison for 33 us out of each sampletime. The conversion
current of 600 pA isonly needed for 3 us (our code isn't quite this timing now). If you could
limit the amount of time the CPU is active, the overall current requirement would be significantly
reduced. (Alwaysrefer to the datasheet for design numbers. And remember, the values we are
getting in the lab exercise might be dightly different than what you get.)

Not to scale ADC10 conversion

600uA for 3uS

ADC10 reference ON
250uA for 33uS

Current

CPU active at 125kHz
106uA for 3 seconds

Time 3s

Getting Started with the MSP430 LaunchPad - Low-Power Optimization



Lab 6: Low-Power Modes

Replace the while(1) loop with a Low-Power Mode

The majority of the power being used by the application we are running is spent in the whi | e( 1)
loop waiting for an interrupt. We can place the device in alow-power mode during that time and
save a considerable amount of power.

16. Delete al of the code from the whi | e(1) loop.

Delete_BI S_SR( G E); from above the loop.
Deletevol atil e unsigned int i; fromthetop of mai n. c.

Then add the following line of code to thewhi | e( 1) loop:
_bis_SR register(LPM3_bits + G E);

This code will turn on interrupts and put the device in LPM 3 mode. Remember that this
mode will place restrictions on the resources available to us during the low power mode.
The CPU, MCLK, SMCLK and DCO are off. Only the ACLK (sourced by the VLO in
our code) isstill running.

Y ou may notice that the syntax has changed between this line and the one we del eted.
M SP430 code has evolved over the years and thislineis the preferred format today; but
the syntax of the other is till accepted by the compiler.

17. At this point, the entire mai n() routine should look like the following:

{

}

voi d mai n(voi d)

Conf i gWDT() ;
Confi gd ocks();
Confi gPi ns();
Conf i gADC10() ;
Confi gTi mer A2() ;

whi | e( 1)

_bis SR register(LPM3_bits + GE); // Enter LPM3 with interrupts

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6-13




Lab 6: Low-Power Modes

18. The Status Register (SR) bits that are set by the above code are:

e SCA: turnsoff SMCLK
e SCGL: turnsoff DCO
e CPUCFF: turns off the CPU

When an ISR istaken, the SR is pushed onto the stack automatically. The same SR value
will be popped, sending the device right back into LPM 3 without running the code in the
whi | e(1) loop. Thiswould happen even if we wereto clear the SR bits during the ISR.
Right now, this behavior isnot an issue since thisiswhat the code in the whi | e( 1) does
anyway. If your program dropsinto LPM3 and only wakes up to perform interrupts, you
could just allow that behavior and save the power used jumping back to mai n() , just so
you could go back to sleep. However, you might want the code in thewhi | e( 1) loop to
actually run and be interrupted, so we are showing you this method.

Add the following code to the end of your Timer ISR:
_bic_SR register_on_exit(LPM3_bits);
Thisline of code clears the bitsin the popped SR.

More recent versions of the M SP430 clock system, like the one on this device,
incorporate afault system and allow for fail-safe operation. Earlier versions of the
MSP430 clock system did not have such afeature. It was possible to drop into alow-
power mode that turned off the very clock that you were depending on to wake you up.
Even in the latest versions, unexpected behavior can occur if you, the designer, are not
aware of the state of the clock system at al pointsin your code. Thisiswhy we spent so
much time on the clock system in the Lab3 exercise.

19. The Timer ISR should look like the following:

/1 Timer_AO interrupt service routine
#pragma vect or =TI MERO_AO_VECTOR

{

}

interrupt void Tinmer_ A (void)

ADC10CTLO = SREF_1 + ADCLOSHT_3 + REFON + ADCLO0ON,

_del ay_cycl es(5); /1 Wait for ADC Ref to settle
ADC10CTLO | = ENC + ADC10SC; /1 Sanpling and conversion start
P1OUT | = BI T6; /1 P1.6 on (green LED)

_del ay_cycl es(100);

ADC10CTLO &= ~ENC, /1 Disabl e ADC conversion
ADCL0CTLO &= ~(REFON + ADC1O0QN); /'l Ref and ADCl0 of f

t empRaw = ADC10MEM /1 Read conversion val ue

P1OUT &= ~BI T6; /1 green LED off

CCRO += 36000; // Add one second to CCRO

_bic_SR register_on_exit(LPM3_bits); // Cr LPM3B bits from SR on exit

Getting Started with the MSP430 LaunchPad - Low-Power Optimization




Lab 6: Low-Power Modes

20. Now build, load and run the code. Make sure the green LED blinks once every three
seconds. Halt the code and click the Ter mi nat e button to return to the “ CCS Edit”
perspective. This codeis saved asLab6a. t xt inthe Filesfolder.

21. Next, remove all the jumpers on header J3 and connect your meter leads. Press the Reset
button on the LaunchPad board and measure the current between the blinks of the green
LED.

Y ou should have avalue around 0.6 pA.

Record your measurement here:

Thisisabig difference! The CPU is spending the mgority of the sampling period in
LPM3, drawing very little power.

Remove the meter leads and carefully replace the jumpers on header J3.

A graph of the current consumption would look something like the below. Our code still
isn’t generating quite this timing, but the DMM measurement would be the same.

3

Not to scale ADC10 conversion

600uA for 3uS

ADC10 reference ON
250uA for 33uS

CPU active at 125kHz
JOuA for 3 seconds

Current

Time 3s

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6 -15



Lab 6: Low-Power Modes

Fully Optimized Code for Low-Power

Thefinal step to optimize the code for low-power isto remove the software delaysin the ISR.
Thetimer can be used to implement these delays instead and save even more power. Itis
unlikely that we will be able to measure this current savings without a sensitive oscill oscope,
since it happens so quickly. But we can verify that the current does not increase.

There are two more software delays still in the Timer 1SR; one for the reference settling time and
the other for the conversion time.

22. The_del ay_cycl es(5); statement should provide about 40uS delay, although there
islikely some overhead in the NOP loop that makes it slightly longer. For two reasons
we're going to leave this as a software del ay;

1) the delay is so short that any timer setup code would take longer than the timer delay
2) the timer can only run on the ACLK (VLO) in LPM3.

At that speed the timer has an 83uS resolution ... asingletick islonger than the delay we
need. But we can optimize alittle. Change the statement as shown below to reduce the
specified delay to 32uS:

Change: _delay_cycl es(5);
To: _delay_cycl es(4);

23. Thefind thing to tackle is the conversion time delay inthe Timer_ A0 ISR. The ADC
can be programmed to provide an interrupt when the conversion is complete. That will
provide a clear indication that the conversion is complete. The power savings will be
minimal because the conversion time is so short, but thisisfairly straightforward to do,
so why not do it?

Add the following ADC10 I SR templ ate to the bottom of main.c:

/1 ADC10 interrupt service routine
#pragma vect or =ADC10_VECTOR
__interrupt void ADC10 (void)

{
}

6-16 Getting Started with the MSP430 LaunchPad - Low-Power Optimization



Lab 6: Low-Power Modes

24. Copy dl of thelinesin the Timer ISR below del ay_cycl es(100) ; and paste theminto
the ADC10 ISR.

25. Inthe Timer ISR delete the code from the _del ay_cycl es(100) ; linethrough the
P1OUT | = BI T6; line.

26. At thetop of the ADC10 ISR, add ADC10CTLO &= ~ADC10l FG to clear the interrupt
flag.

27. Inthe ADC10 ISR delete the PLOUT &= ~BI T6; and CCRO += 36000; lines.

28. Lastly, we need to enable the ADC10 interrupt. Inthe Timer ISR, add + ADCL10I E to the
ADCI10CTLO register line.

The Time and ADC10 ISRs should look like this:

#pragma vect or =TI MERO_AO_VECTOR
_interrupt void Timer_A (void)

ADC10CTLO = SREF_1 + ADC10SHT_3 + REFON + ADC10ON + ADC1O0I E ;

_delay_cycl es(4); /1 wWait for ADC Ref to settle
ADC10CTLO | = ENC + ADC10SC; /1 Sanpling and conversion start
CCRO +=36000; /1 add 12 seconds to the tiner
_bic_SR register_on_exit(LPM3_hits);

}

/1 ADCLO interrupt service routine
#pragma vect or =ADC10_VECTOR
__interrupt void ADC10 (void)

ADC10CTLO &= ~ADC10l FG /1l clear interrupt flag
ADC10CTLO &= ~ENC; /1 Disabl e ADC conversi on
ADC10CTLO &= ~(REFON + ADCLOON); /1 Ref and ADC10 of f

t enpRaw = ADC10MEM /1 Read conversion val ue
_bic_SR register_on_exit(LPM3_bits);

}

29. Build and load the project. Eliminate any breakpoints and run the code. We eliminated
the flashing of the green LED since it flashes too quickly to be seen. Set a breakpoint on
the _bi c_SRIlineinthe ADC10 ISR and verify that the valueint enpRaw s updating as
shown earlier. Click the Ter m nat e button to halt the code and return to the “CCS
Edit” perspective. If you are having adifficult time with the code modifications, this
code can be found in Lab6b.txt in the Files folder.

Getting Started with the MSP430 LaunchPad - Low-Power Optimization 6-17



Lab 6: Low-Power Modes

Summary

Our codeisnow as close to optimized asit gets, but again, there are many, many ways to get
here. Often, the need for hardware used by other code will prevent you from achieving the very
lowest power possible. Thisisthe kind of cost/capability trade-off that engineers need to make
al thetime. For example, you may need a different peripheral — such as an extratimer —which
costs afew cents more, but provides the capability that allows your design to run at its lowest
possible power, thereby providing a battery run-time of years rather than months.

30. Remove the jumpers on header J3 and attach the DMM leads as before. Press the Reset
button on the LaunchPad board and measure the current between the blinks of the green
LED.

Y ou should have avalue around 0.6 pA.

Record your measurement here:

A graph of the current consumption would look something like this:

Not to scale ADC10 conversion

600uA for 3uS

= = L]

Q

= CPU in LPM3 ADC10 reference ON

8 TiieEoi VIO 250uA for 33uS

.OuA for 3 seconds CPU active at 125kHz
106uA for a few uS
Time 3s

That may not seem like much of a savings, but every little bit counts when it comes to
battery life. To quote awell known TI engineer: “Every joule wasted from the battery is
ajoule you will never get back”

Congratulations on completing thislab! Remove and turn off your meter and replace all
of the jumpers on header J3. We are finished measuring current.

31. Closethe project by right-clicking on Lab6 inthe Pr oj ect Expl or er paneand
select Cl ose Proj ect.

ST

You're done.

6-18 Getting Started with the MSP430 LaunchPad - Low-Power Optimization



Serial Communications

Introduction

This module will cover the details of serial communications. In the lab exercise we will
implement a software UART and communicate with the PC through the USB port.

Introducti
Co ompos udio
Initialization and GPIO
Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization
Serial Communications
Grace
FRAM
: Capacitive Touc

usl...

50

Getting Started with the MSP430 LaunchPad - Serial Communications 7-1



Module Topics

Module Topics

S = O a1 10T T 0= A o] R 7-1
7T LU = 0] o =S 7-2
SEriAl COMMUINICALTIONS. .....vveiitieiteecteeeteestesebessbeesbessbessabessbessabessbessabessabessasesssbessnsesssbessnsessbessnsessnns 7-3

L 7-3
0] (000 £ 7-3
Software UART IMpPlEmMENtAiON.......cceceeieece et ne e s 7-4
USB COM POrt COMIMUINICAEION ...vveiveieeeteieeeiteeessteeessseessssssessssssssssasssssssssssssssssesssssssssssssssssssssnessas 7-4
Lab 7: Serial COMMUNICAIIONS ......cceiiieeeeeeteieeeeeie e e seeeeseteessssaseessssbeesssbaesssssessssbbeessasbesessssnesssssnessas 7-5
(O o 1= ot (= SRR URRRRTI 7-5
PIOCEOUIE........eeeie ettt e ettt e e et e e s s et e e e s et e e e s eabaeessbbees s sbaeessaseesssbbeessanbesssansnnassbaneesas 7-6

7-2 Getting Started with the MSP430 LaunchPad - Serial Communications



Serial Communications

Serial Communications

USCI
Universal Serial Communication Interface
¢ USCI_AOQ supports: uscl
¢ SPI (3or4wire)
& UART A
¢ [rDA
¢ USCI_BO supports: B
¢ SPI (3or 4 wire)
¢ 12C
Protocols ...
Protocols
USCI Serial Protocols
¢ SPI s
_ . SPI »> SPI
Serial Peripheral Interface Master |e SISSI\CJ) Slave
Single Master/Single Slave >
vdd *—9
I_E'J L=
‘ I2C ch:ﬁ — 4 — — —
- Inter-Integrated Circuit Interface T T T T
Single Master/Multiple Slaves uC DAC || ADC uC
Master| | Slave | | Slave | | Slave
¢ UART . o
Uni I A h X S
ReceiverTransmitter RT (R —3d RIT
Full duplex

S/W UART Implementation ...

52

Getting Started with the MSP430 LaunchPad - Serial Communications



Serial Communications

Software UART Implementation

Software UART Implementation

¢ Asimple UART implementation, using the Capture &
Compare features of the Timer to emulate the UART
communication

¢ Half-duplex and relatively low baud rate (9600 baud
recommended limit), but'2400 baud in our code (1 MHz DCO
and no crystal)

Bit-time (how many clock ticks one baud is) is calculated
based on the timer clock & the baud rate

One CCR register is set up to TX in Timer Compare mode,
toggling based on whether the corresponding bitis O or 1
The other CCR register is set up to RX in Timer Capture
mode, similar principle

The functions are set up to TX or RX a single byte (8-bit)
appended by the start bit & stop bit

* 6 o o

PV ololilo:1ileTa Mo} =8 htip://focus.ti.com/lit/an/slaa078al/slaa078a.pdf

USB COM Port ...

53

Application note: http://focus.ti.com/lit/an/slaa078a/d aa078a.pdf

USB COM Port Communication
USB COM Port Communication

¢ Emulation hardware implements emulation features
as well as a serial communications port

¢ Recognized by Windows as part of composite driver

¢ UART Tx/Rx pins match Spy-Bi-Wire JTAG interface
pins

HI, LO, IN

Lab ...

7-4 Getting Started with the MSP430 LaunchPad - Serial Communications


http://focus.ti.com/lit/an/slaa078a/slaa078a.pdf�

Serial Communications

Lab 7: Serial Communications

Objective

The objective of thislab isto learn serid communications with the MSP430 device. Inthislab
exercise we will implement a software UART and communicate with the PC using the USB port.

Lab7: Serial Communication

» Alter code to run on WDT+ interval
timer

» Add code to detect
above/below/within temperature range

» Add UART code to send data to PC o o
via USB COM port s pd T

Getting Started with the MSP430 LaunchPad - Serial Communications 7-5



Serial Communications

Procedure

Create a New Project

1. Create anew project by clicking:
File > New - CCS Project

Make the selections shown below (your dialog may look slightly different than this one).
If you are using the M SP430G2231, make the appropriate choices for that part. Make
sureto click Enpty Pr oj ect, and then click Fi ni sh.

& New CCS Project [E3

CCS Project £
Create a new CC5 Project.

Project name: | Lab7 |

Cutput type: |Executahle W |

[Juse default location

Location: |C:'J~15P-13D_LaunchPad'-Labs'-Lab}"-Praject | [ Browse. ., ]
Device
Famiy:  |M5P430 v|
Variant: | 2553 v | [MsP430G2553 |
Connection: | TI MSP430 USE1 [Default] v|

¥ Advanced settings

w Project templates and examples

| Creates an empty project fully initialized for
the selected device,

= E Empty Projects

ety proect|

E Empty Assembly-only Project

& Empty RTSC Project

[ Empty Grace (M5P430) Project
== Basic Examples

[& Blink The LED

E Hello Warld

[+ -i=l rirare Fyamnles

|

| £

@ < Back ext = Finish ] [ Cancel

7-6 Getting Started with the MSP430 LaunchPad - Serial Communications



Serial Communications

Source File

In this lab exercise we will be building a program that transmits“HI”, “LO” or “IN” using the
software UART code. Thisdatawill be communicated through the USB COM port and then to
the PC for display on aterminal program. The UART code utilizes TIMER_A2, so we will need
to remove the dependence on that resource from our starting code. Then we will add some “trip
point” code that will light the red or green LED indicating whether the temperature is above or
below some set temperature. Then we will add the UART code and send messages to the PC.
The code file from the last lab exercise will be used as the starting point for thislab exercise.

1. OpenthelLab6a. t xt fileusingFile > Open File...
e C:\MSP430 LaunchPad\L abs\L ab6\Files\L ab6a.txt

2. Copy al of the code from Lab6a. t xt and pasteit into nmai n. c, erasing the previous
contents of mai n. c. Thiswill bethe starting point for thislab exercise. Y ou should
notice that thisis not the low-power optimized code that we created in the latter part of
the Lab6 exercise. The software UART implementation requires Timer_A2, so using the
fully optimized code from Lab6 will not be possible. But we can make a few adjustments
and ill maintain fairly low-power.

ClosetheLab6a. t xt file. If you are using the M SP430G2231, make sure to make the
appropriate change to the header file include at the top of the mai n. c.

3. Asatest —build, load, and run the code. Remove t enpRaw from the Expression pane.
If everything is working correctly, the green LED will blink once every three seconds,
but the blink duration will be very, very short. The code should function exactly the
same as the previous lab exercise. When done, halt the code and click the Ter i nat e

B putton to return to the “CCS Edit” perspective.

Remove Timer_A2 and Add WDT+ as the Interval Timer

4. We need to remove the previous code' s dependence on Timer_A2. The WDT+ can be
configured to act as an interval timer rather than awatchdog timer. Change the
Conf i gWDT() function so that it looks like this:

voi d Confi g\WDT(voi d)

WDTCTL = WDT_ADLY_250; /1l <1 sec VDT interval
| E1 | = WDTI E; /1l Enabl e WDT interrupt
}

The selection of intervals for the WDT+ is somewhat limited, but WOT_ADLY 250 will
give usalittle less than a 1 second delay running on the VLO.

WDT_ADLY_250 setsthe following bits:

WDTPW: WDT password
WDTTMSEL: Selectsinterval timer mode
WDTCNTCL: Clearscount value
WDTSSEL: WDT clock source select

Getting Started with the MSP430 LaunchPad - Serial Communications 7-7



Serial Communications

5. Thecodeinthe Timer_AO ISR now needsto run when the WDT+ interrupts trigger:

e Changethis:

/1 Timer_A2 interrupt service routine
#pragma vect or =TI MERO_AO_VECTOR
__interrupt void Tinmer_A (void)

{

e Tothis

/1 VDT interrupt service routine
#pragma vect or =VWDT_VECTOR
__interrupt void WDT(void)
{

6. Thereisno need to handle CCROinthe WDT ISR. Deletethe CCRO += 36000; line.

7. Thereisno need to set up Timer_A2 now. Deleteall the code inside the

Confi gTi mer A2() function.
Build, load, and run the code. Make sure that the code is operating like before, except
that the green LED will blink about once per second. When done, click the Ter mi nat e

button ™ to return to the “ CCS Edit” perspective. If needed, this code can be found in
Lab7atxt inthe Filesfolder.

Add the UART Code
9. Delete both PIOUT linesinthe WDT ISR. We are going to need both LEDsfor a

different function in the following steps.

10. We need to change the Transmit and Receive pins (P1.1 and P1.2) on the M SP430 from

GPIO to TAO function. Add thefirst line shown below to your Conf i gPi ns()
function and change the second line as follows:

voi d Confi gPi ns(voi d)

{
P1SEL | = TXD + RXD; /]l P1.1 & 2 TAO, rest GPIO
PIDIR = ~(BIT3 + RXD); /1 P1.3 input, other outputs
P10OUT = O; /1 clear outputs
P2SEL = ~(BIT6 + BIT7); I/l make P2.6 & 7 GPIO
P2DIR | = BIT6 + BIT7; /] P2.6 & 7 outputs
P20UT = 0; /1 clear outputs

}

Getting Started with the MSP430 LaunchPad - Serial Communications




Serial Communications

11. We will need afunction that handles the transmit software; adding alot of code tendsto
be fairly error-prone. So, add the following function by copying and pasting it from here
or fromTransmi t. t xt inthe Filesfolder to the end of mai n. c:

/1 Function Transmits Character from TXByte
void Transmt()

{
Bi tCnt = OxA; /1 Load Bit counter, 8data + ST/SP
while (CCRO != TAR) /1l Prevent async capture

CCRO = TAR, /1 Current state of TA counter

CCRO += Bitine; /1 Some time till first bit
TXByte | = 0x100; /1 Add mark stop bit to TXByte
TXByte = TXByte << 1, /1l Add space start bit
CCTLO = CCI SO + QUTMODO + CCE; // TXD = mark = idle
while ( CCTLO & CCIE ); /1 Wait for TX conpletion

}

Be sure to add the function declaration at the beginning of mai n. c:
void Transmit(void);

12. Transmission of the serial data occurs with the help of Timer_A2 (it setsall the timing
that will give us a 2400 baud datarate). Cut/paste the code below or copy the contents of
Ti mer _A2 | SR t xt and pasteit to theend of mai n. c:

/1 Timer AO interrupt service routine
#pragma vect or =TI MERO_AO_VECTOR
_interrupt void Timer_A (void)

{
CCRO += Bitinmne; /'l Add Ofset to CCRO
if (CCTLO & CClI S0) /1 TX on CCl0B?
if ( BitCnt == 0)
{
CCTLO &= ~ CCE ; /1 Al bits TXed, disable interrupt
}
el se
{
CCTLO | = QUTMOD2; /1l TX Space
if (TXByte & 0x01)
CCTLO &= ~ OUTMODZ; /] TX Mark
TXByte = TXByte >> 1;
BitCnt --;
}
}
}

Getting Started with the MSP430 LaunchPad - Serial Communications 7-9




Serial Communications

13. Now we need to configure Timer_A2. Enter the following lines to the
Confi gTi mer A2() functionin Main.c so that it looks like this:

voi d Confi gTi nmer A2(voi d)
{
CCTLO = QUT; /1 TXD lIdle as Mark
TACTL = TASSEL 2 + MC 2 + I D 3; /!l SMCLK/ 8, continuous node
}

14. To make this code work, add the following definitions at the top of mai n. c:

#define TXD BIT1 /1 TXD on P1.1
#define RXD BI T2 !/ RXD on P1.2
#define Bitine 13*4 /1 0x0D

unsi gned int TXByte;
unsi gned char BitCnt;

15. Since we have added alot of code, let'sdo atest build. Inthe Pr oj ect Expl or er
pane, right-click on mai n. ¢ and select Bui | d Sel ected Fil e(s). Check for
syntax errorsin the Console and Problems panes.

16. Now, add the following declarations to the top of mai n. c:

vol atile long tenpSet = O;
vol atile int i;

Thet enpSet variable will hold the first temperature reading made by ADC10. We will
then compare future readings against it to determine if the new measured temperatureis
hotter or cooler than that value. Note that we are starting the variable out at zero. That
way we can use its non-zero value after it’' s been set to make sure we only set it once.
WEe'll needthe* i ” in the code below

7-10 Getting Started with the MSP430 LaunchPad - Serial Communications



Serial Communications

17. Add the following control code to thewhi | e( 1) loop right after line containing
_bis SR register(LPM3_bits + G E);

ThiscodeisavailableinWhi | e. t xt :

if (tempSet == 0)

{
tenpSet = tenpRaw, /1 Set reference tenp

}
if (tempSet > tenpRaw + 5) /] test for lo

P1OUT = BI T6; /1 green LED on
P1QUT &= ~BI TO; /1 red LED off
for (i=0;i<5;i++)

TXByte = TxLdi];
Transmt();

}
}
if (tempSet < tenpRaw - 5) [l test for hi

P1OUT = BI TO; /1 red LED on
P1OUT &= ~BI T6; /1 green LED off
for (i=0;i<5;i++)

{

TXByte = TxHI[i];

Transmt();

}
if (tempSet <= tenpRaw + 2 & tenpSet >= tenpRaw - 2)
/1 test for in range
P1OUT &= ~(BITO + BIT6); // both LEDs off
for (i=0;i<5;i++)

TXByte = TxINi];
Transmt();

}

}

This code sets three states for the measured temperature; LO, HI and IN that are indicated by the
state of the green and red LEDs. It also sends the correct ASCII sequence to the Transmit()
function.

Getting Started with the MSP430 LaunchPad - Serial Communications 7-11



Serial Communications

18. The ASCII equivalents that will be transmitted to the PC are:
o LO<LF><BS><BS>: 0x4C, Ox4F, Ox0A, 0x08, 0x08
e HI<KLPF><BS><BS>:  0x48, 0x49, 0x0A, 0x08, 0x08
e IN<LP><BS><BS>:  0x49, Ox4E, 0x0A, 0x08, 0x08

Theterminal program on the PC will interpret the ASCII code and display the desired
characters. The extra Line Feeds and Back Spaces are used to format the display on the
Terminal screen.

Add the following arrays to the top of mai n. c:

unsi gned int TxH []={0x48, 0x49, 0x0A, 0x08, 0x08};
unsi gned int TxLJ ]={0x4C, 0x4F, 0x0A, 0x08, 0x08};
unsi gned int TxI N ]={0x49, 0x4E, 0x0A, 0x08, 0x08};

Test the Code

19. Build and load the code. If you're having problems, compare your code with
Lab7Fi ni sh. t xt foundinthe Filesfolder. Don't take the easy route and copy/paste
the code. Figure out the problem ... the process will pay off for you later.

20. Next, we need to find out what COM port your LaunchPad is connected to. In Windows,
click Start - Run and enter devmgmt.msc into the dialog box, then click OK. This
should open the Windows Device Manager.

Click the symbol next to Ports and find the port named M SP430 Application UART.
Write down the COM port number here . (The one on our PC was COM24).
Close the Device Manager.

21. Minimize CCS and run Windows HyperTermina (if you're running XP), TeraTerm or
your other favorite terminal program (if you're running Win7). In HyperTerminal, give
the New Connection aname and click OK. In the next dial og, select the COM port you
found in the previous lab step in the Connect using box. Click OK

COM24 Properties B
Port Settings
Bits per second: | 2400 w
Data bits: |28 v
Parity: | None b
Stop bits: | 1 w
Flaw cortral: v
Restore Defaults
QK I [ Cancel I [ HApply I

Then click OK.

7-12 Getting Started with the MSP430 LaunchPad - Serial Communications



Serial Communications

22. Inthe your terminal display, you will likely see IN displayed over and over again.
Exercise the code. When you warm up the M SP430, the red LED should light and the
Terminal should display HI. When you cool down the M SP430, the green LED should
light and the Terminal should display LO. Inthe middie, both LEDs are off and the
Terminal should display IN. Remember that the reference temperature was set when the
code wasfirst run.

Thiswould also be a good time to note the size of the code we have generated. Inthe
Console pane at the bottom of your screen note:

MSP430: Program | oaded. Code Size - Text: 772 bytes Data: 58 bytes

Based on what we have done so far, you could create a program more than twenty times
the size of this code and still fit comfortably inside the M SP430G2553 memory.

When you're done, close your terminal program.

Terminate Debug Session and Close Project

23. Terminate the active debug session using the Ter m nat e button B Thiswill close
the debugger and return CCSto the “CCS Edit” view.

24. Close the Lab7 project in the Project Explorer pane.

STOP ﬂ

You're done.

Getting Started with the MSP430 LaunchPad - Serial Communications 7-13



Serial Communications

7-14 Getting Started with the MSP430 LaunchPad - Serial Communications



Introduction

Grace

This module will cover the Grace™ graphical user interface. Grace™ generates source code that
can be used in your application and it eliminates manual configuration of peripherals. The lab will
create a simple project using Grace™ and we will write an application program that utilizes the

generated code.

Intr cti
Co ompos udio
Initialization and GPIO
Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization
Serial Communications

Grace

FRAM
I: Capacitive Touc

Whatis Grace?

56

Getting Started with the MSP430 LaunchPad - Grace



Module Topics

Module Topics
L] = o SRS 8-1
7T LU = 0] o =S 8-2
L= o= USRS 8-3
LA 9. GIACE.....iciicteete ettt ettt c et e ettt e s be e be et e e st e e asesbeesbaeebeesbesasesaeeeaeeebeenbeeabeeabeebaeebe e beereenneeneenaes 8-8

8-2 Getting Started with the MSP430 LaunchPad - Grace



Grace

Grace

Grace™

o=

o mse =2

= Eoathe Rreante T
ATRETTURR. ABTEREY A
et NrRERak

Grace”

A free, graphical user interface that
generates source code and eliminates
manual peripheral configuration

Simplified Peripheral Config

a7

Fully harness MSP430 integration... for FREE

* Visually enables and configures MSP430 peripherals

microcontrollers

Simplified Peripheral Configuration

* Generates fully commented C code on all F2xx and G2xx Value Line

| Get started quickly and learn as you go

* Plug in for Tl's Eclipse-based Code Composer Studio IDE

* Provides rapid understanding of MSP430 peripherals and configutation options
* Guides peripheral integration with tooltips and pop-ups
* Prevents configuration conflicts or collisions between peripherals

+ Seamlessly includes peripheral configuration code into a CCS project
* Loads and debugs MSP430 devices just like traditionally generated code

Visually Config and Enable ...

* Provides various levels of abstraction — Basic, Power User, and Register Views |

a8

Getting Started with the MSP430 LaunchPad - Grace



Grace

Visually Enable & Configure MSP430 Peripherals

Developers can interface
with buttons, drop downs,
and text fields to
effortlessly navigate high
above low-level register
settings

MSP430y 9,

Grace generates fully

commented C code for all

F2xx and G2xx Value Line
Microcontrollers from

— — m MSP430

- VR [|™ 4 ADCL0 - 10-bit SAR Overvien ]

e ) o e o em—

f Twant to use the ADC10 n ry configuraticn

= Introduction &

The AOC10 medu suports Fast, 10-0k anlog e tigkal
The DTC aloms ACCI0 satuples to b corrvested ond soref

Choose your View ...
59

Developers Can Choose Their View

Basic Grace offers a variety of
View views to accommodate

developers’ varying skill
levels and preferences

Power

User

L View Developers spend less

: time configuring low level
peripheral setup code

el Allowing more time for
x product differentiation,
full-featured user
experiences and faster
time to market

Get Started Quickly ...
&0

8-4 Getting Started with the MSP430 LaunchPad - Grace



Grace

5@ New CCS Project

Project Templates
Select one of the avalable profect templates.

Example projects
can be used to
learn about Grace

&

5 Basic Examples
L Grace Examples

] svs/mI0S

and the Code

[ Empty RTSC-Configuration Project &
& Empty MSP430 Grace Project:

1 environment, or
used as a starting

L [ ADC10 tempes stire measUrement
[k Blink LED frem the CPU

[ Blink LED with Timer_a p0| nt for

[ Echo characters bo the UART . .

L towpove mode aperien application
[ SPI commuication toffrom the CC25( development

] »

Composer Studio™

Get Started Quickly & Learn As You Go

The content within Grace™, as
well as the look-and-feel, is
d based on existing MSP430 user
i guides and datasheets

T

@

ADC10SR

REF
BURST

|0/ 0|00 @2 | @2 |@

REFOUT Msc | REF2SV

Aocia
AEron =

| Regis ADC10 samping rate. This bit selects the reference buffer drive capabilty for
"

the maximum samping rate. Setting ADC105R reduces the current
consumption of the reference buffer.

SHEx

0 Reference buffer supports up to ~200 ksps
1 Reference buffer supports up to ~S0 ksps

Tooltips and pop-ups guide
peripheral integration

Grace makes it easy for both
those familiar with MSP430

documentation and those
new to it to get started

Prevents Collisions ...
&1

Prevents Collisions & Contradicting Configurations

P1dP2x P3xPdx P1xP2x PIxnPAx
A28 28 . 28 28
y Y A 3
v ¥ 4
PorteP1P 2 PortsP3P 4|
0AD, OA1 2810 248 100 DAD, OA1 2810 2810
Intemupt  pul-upldovn| Imemupt  pul-upidown| X \
. | |2 op amps | | capaviity,  resigars 2 0p amps | | cspabi resish \
4o
stors: sistors
Y 3 3

LA 4

r
. USCI_AD:
I._.. = ” Lol ”ummw.l

Instant notification of
configuration errors

Ensures inter-peripheral
configurations are consistent

Imﬂh&n”hmn |I

Timer B3 Il el

LI | H

+ Edits/ichangesthat are made in
one peripheral can be reflected
in other modules

+ Changes are reflected between
Basic, Power User, and
Register Views

Familiar Environments ...
B2

Getting Started with the MSP430 LaunchPad - Grace



Grace

Create Designs In Familiar Development Environments

T - M

ans |+ Free Plug in for Tl's
Eclipse-based Code

Composer Studio™ |IDE

+ Code generated by
Grace is directly
inserted into an active
Code Composer Studio
project environment

Bl 4V I LW 0208

+  The generated code can
then be debugged and

downloaded onto an
MSP430 just like
traditionally written code

Seamless Include
B3

Seamlessly Include Peripheral Configuration
Code into a CCS Project

- = :

%§ Launch Tl Debugger

15 Debug...
Organize Favorites...

Debug &
download
justlike
traditionally
written code

* Fully-commented, and
human-readable C code is
generated at build time

+ Seamlessly and
automatically inserted

ADCIGETLL = CONSEQ D + ADCIOSSEL O

R CCS project

+ ADTIDDTY 3

directly into your active

ADTIGCTLE = ADTIDIE + ADCIOGK + KEFTN = ADCIOSR + ADCIORNT 3 + SEEF 1

4 ENE 1+ INCE 10:

Supports ...

Getting Started with the MSP430 LaunchPad - Grace




Grace

Grace™ Supports MSP430’s Most Popular Tools

Grace supports all F2xx and G2xx Value
Line microcontrollers from MSP430

When paired with hardware tools such as
the $4.30 MSP-EXP430G2 LaunchPad,
the wireless eZ430-RF2500, or the eZ430-
F2013, Grace offers a simple, intuitive,
and friendly user interface

Grace also works with MSP430's Flash
Emulation Tool and Target Boards,
such as:

+  MSP-TS430PW28
+  MSP-TS430PW28A
+  MSP-TS430PW14

Download Grace at:

Lab ...
B3

Getting Started with the MSP430 LaunchPad - Grace



Lab 8: Grace

Lab 8: Grace

Objective
The objective of thislab isto create a simple project using Grace. This project will be similar to

an earlier project in that it will use the Timer to blink the LED. Using Grace to create the
peripheral initialization code will simplify the process.

Lab8: Grace

» Use Grace to configure all the
required peripherals

» Add application code to blink the LED
using the Grace initialization code

66

8-8 Getting Started with the MSP430 LaunchPad - Grace



Lab 8: Grace

Procedure

Create a Grace Project

1. Graceispart of the Code Composer Studio 5.1 installation. Create a new project by

clicking:
File > New > CCS Project

Make the sel ections shown below (your dialog may look slightly different than this one).
If you are using the M SP430G2231, make the appropriate choices for that part. Make
suretoclick Empty Grace (MSP430) Project, andthenclick Fi ni sh.

%" New CCS Project

CCS Project
Create a new CCS Project.

Project name: | Labg

Connection: |'I'[ MSP430 USE1 [Default]

Qutput type: |Exe-:utal:-le v|
[Juse default location
Location: |C:'|,|'~'15P430_LaunchPad'|J_abs\LabB'nProject | [ Browse. .. ]
Device
Famiy: | MSP430 |
Variant: | 2553 v | | MsP430G2553 v|
v

» Advanced settings

« Project templates and examples

= Empty Projects

o E Empty Project

E Empty Assembly-only Project
|2k Empty RTSC Project

| Empty Grace (MSP430) Praject
= Basic Examples

. [EBinkThe LED

: E Hello World
==l frare Frvamnles

|3

B3

Enables the use of Grace within your project
50 that you can graphically configure your
peripherals, generate runtime initialization
code, and call this code from your application.

This project's application code simply calls the
generated initialization code and exits.

Many mare peripheral-specific examples are
available in the Grace Examples section of the
TI Resource Explorer (accessed via the
View-=TI Resource Explorer menu).

[ mext= || __Fnish

] [ Cancel

Getting Started with the MSP430 LaunchPad - Grace



Lab 8: Grace

Welcome to Grace™

2. The Grace Welcome screen will appear in the editor pane of CCS. If you ever manage to
make this screen disappear, simply re-open *.cfg (main.cfg is the filename here). When a
Grace project is opened, the tool creates this configuration file to store the changes you
make. Click Device Overview.

Grace presents you with a graphic representing the peripherals on the M SP430 device.
Thisisn't just a pretty picture ... from here we'll be able to configure the peripherals.
Blue boxes denote peripherals that can be configured. Note that three of the blue boxes
have a check mark in the lower left hand corner. These check marks denote a peripheral
that already has a configuration. The ones already marked must be configured in any
project in order for the MSP430 to run properly.

If you are using the M SP430G2231, your Grace window will look slightly different.

&4 Grace - MSP430G2553

System Registers
HIM - ¥OUT 1.8V |»|DVCC DVss AVCC P1x P2x Pax
o J | | P Tr
¢ + v * ¢ ¢ :
A 4
Osdlldors +ACLK Flash ADE10 Port P1 Fort P2 PortP3
B;:;Er:&d( \ae RAM 10-Bit 810 810 810
PsucLe | g 512kB | 8 Chennels | | METURL  Intemupt
) capability capability Pull-up/
4B 256kB Autoscan L g
MCLK 2kB 1chpma | [ul-upidown Pullupldown — down
éeadcrs resistors resistors
168MHz Mmeg
CPU
1MB
ind. 16
Registers MDEB
Emulation
BEP USCl AD:
UARTILIN,
Comp_A+ Watchdog Timer0_A3 | | Timer1 _A3 1D &, SPI
JTAG Brownout WDT+
Interface Protedion 8 jce ace
Channels 15-6it Regigers Registers uscl B0
p— o SPI2C
Wire: T
RSTIMNMI

Getting Started with the MSP430 LaunchPad - Grace



Lab 8: Grace

DVCC

3. Let'sdtart at the top. Earlier in this workshop we measured the DV CC on the board at
about 3.6V DC. Change the pull down at the top to reflect that.

¥IN ¥oUuT BBV | Dvee DVSS
.4 l |
i v v

ALK
>

Basic Clock
System+ SI".'_'l CLK Flazh

B Akd

BCS+
4. Next, click on the blue Basic Clock System + box.

Note the navigation buttons at the top for the different views. These buttons may
disappear if the window is large enough and you dide to the bottom of it. If they do, slide
back to the top. Also note the navigation buttons on the top right of the Overview screen
and the tabs at the bottom |eft. Take alook at the different views, but finish by clicking
the Basic User button.

The default selections have the calibrated frequency at 1 MHz for the High Speed Clock
Source and 12 kHz for the low. Note the smplified view of the MCLK, SMCLK and
ACLK. If you need more detailed access, you can switch over to the Power User view. In
any case, leave the selections at their defaults and click the Grace tab in the lower | eft.

High Speed Clodk Source cpU

Select calibrated ;| + 1000 kHz
freguency

ar

manually configure* | 1000.0 kH=z

" hanually con fguring the frequency f : "
can resultin a +-10 % frequency High-Speed Peripherals
deiation 1000 kHz

Low Speed Clock Source** LoweSpeed Peripherals
Select available 12 kHz i 12 kHz
preset frequency

or

manualy configure kHz

** This s=tting uses anintemal lowfreguency

oscillator, Freguency can vary between 4kHz 1o

20kHz. See spedfic device datasheet.

Getting Started with the MSP430 LaunchPad - Grace 8-11



Lab 8: Grace

WDT+

5. Let'sconfigure the Watchdog Timer next. Click on the blue WatchDog WDT+ box in
the Overview graphic. Note the selection at the top enablesthe WDT+. Click the Basic
User button. Stop Watchdog timer is the default selection ... let’ sleaveit that way. Click

the Grace tab in the lower |eft.

WDT+ Mode Select

op CNaog

Interval Timer Mode
Watchdog Timer Mode

[] Enable Watchdog Timer Interrupt

Interrupt Handler:

After Interrupt: Do Mot Change Operating Mode

W

e.9., void interruptHandler (void).

Note: Grace interrupt handlers are names of user-provided functions, Manual mode
requires no arguments but requires a return value, e.q., unsigned short
interruptHandler{void). All other modes require no arguments and return value,

GPIO

6. GPIOisnext. For thislab, we want to enable the GPIO port/pin that is connected to the
red LED (port 1, pin 0). Click on the upper right blue box marked Port P1 Port P2 Port
P3. In the next screen, click the buttons marked Pinout 32-QFN, Pinout 20-T SSOP/20-
PDIP and Pinout 28-TSSOP to view the packages with the pinouts clearly marked. If you
are using the M SP430G2231, your package selections will be different. No databook
required. We could make our changes here, but let’ s use another view.

Resize the Grace window if you need to do so. Click the P1/P2 button. The Direction
Registers all default to inputs, so check the port 1, pin O Direction register to set it to an
output. No other changes are required. Click the Grace tab in the lower |€ft.

PORT 1
Output Register

7 L] 5 4

o 0O 0O 0 O

Direction Register

7 [ 5 4

O a O O O

Getting Started with the MSP430 LaunchPad - Grace



Lab 8: Grace

Timer_A2

7. WEe'regoing to use the timer to give us a one second delay between blinks of the red
LED. To configure the timer, click on the blue box marked Timer0O_A3 (Thiswill be
TimerQ_AZ2 if you are using the MSP430G2231). In the next screen, click the check box
marked Enable Timer _A3in my configuration. When you do that, the view buttons
will appear. Click on the Basic User button.

In our application code, we' re going to put the CPU into low-power mode LPM3. The
timer will wake up the CPU after a one second delay and then the CPU will run the ISR
that turns on the LED. Our main() code will then wait long enough for us to see the LED,
turn it off and go back to deep.

We need the following settings for the timer:
e Timer Selection: Interval Mode/ TAO Output OFF
o Desired Timer period: 1000ms
e Enablethe Capture/Compare Interrupt
e Interrupt Handler: timerlsr (thiswill bethe name of our timer | SR)

o After Interrupt: Active Mode

Timer Selection:

Timer OFF TAD Qutput OFF

Interval Mode P11/ Timer_A2.TAD

P Mode L P1.5/Timer_AZ.TAD

Custom

Desired Timer Period: 1000 ms Calculated Timer Period: 1s
Calculated Timer Frequency: 1Hz

Enable Capture/Compare Interrupt
Interrupt Handler. | timerlsr

After Interrupt: Active Mode “

Make those settings, and then click the Grace tab in the lower left corner. Note that the
configured peripherals al have a check mark in them. The Outline pane on the right of
your screen also lists al the configured peripherals.

Getting Started with the MSP430 LaunchPad - Grace 8-13



Lab 8: Grace

System Registers - GIE

8. I"'m sure you remember that without the GIE (Global Interrupt Enable) bit enabled, no
interrupts will occur. At the top of the Device Overview window, click on the System
Registers button. Find the GIE bit in the Status Register and make sure that it's checked.
If your M SP430G2231 configuration has an enable checkbox, make sureit’ s checked.
Click the Device Overview button. We're done with the Grace configuration. Click the
Save button to save your changes.

SR, Status Register

15 i 13 i2 i1 0 a ] 7 ] 5 4 a 2 1

Resarved W 051 S0 OSCOFF | CPUDFF GIE o z

Application Code

9. Grace automatically creates a main.c template for us with the appropriate Grace calls.
Double click on main.c in the Project Explorer pane to open thefile for editing.

*/

/*

*/

/*

int main(int argc, char *argv[])

{
CSL init(); /'l Activate Grace-generated configuration
/[l >>>>> Fill-in user code here <<<<<
return (0);
}

The standard nsp430. h definition fileisincluded first, followed by the CSL. h Grace
definitions. (CSL means Chip Support Library).

Inthemai n() declaration, note ar gc and *ar gv|[ ], argc/argv are standard argumentsfor aC
main() function. They allow usersto invoke the app with a command line argument. argc isthe
argument count, and argv is the argument vector. Inside mai n() iSCSL_i ni t () that runsal
of the Grace initialization that we just configured.

8-14 Getting Started with the MSP430 LaunchPad - Grace




Lab 8: Grace

10. First, let'smodify mai n() abit. Remove the argumentsin the mai n() declaration and
remove the return at the bottom. We won't be using those. In order to save some space,
we' ve remove some of the comments (you don’t have to):

#i ncl ude <nsp430. h>
#i ncl ude <ti/ncu/ msp430/csl/ CSL. h>

int mai n(voi d)

{
CSL init(); /'l Activate Grace config

}

11. Thefirst thing we want the main code to do isto place the device into LPM 3. When the
timer expires, the time ISR code will turn onthered LED. Our mai n() code will wait a
short time, then turn the red LED off. Add thewhi | e()) loop and code as shown below:

#i ncl ude <nsp430. h>
#i nclude <ti/ncu/ nmsp430/csl/CSL. h>
int mai n(voi d)
{
CsSL init(); /1 Activate Grace config
while (1)
{
_bis SR register(LPM3_bits); /1l Enter LPM
_del ay_cycl es(10000); /1 10nms del ay
P1OUT &= ~BI TO; /1 Turn off LED on P1.0
}
}

Getting Started with the MSP430 LaunchPad - Grace 8-15



Lab 8: Grace

12. Now we can add the timerl SR() code that turns on the red LED. Make your code ook
likethis:

#i ncl ude <msp430. h>
#i nclude <ti/ncu/ nsp430/csl/CSL. h>

int mai n(voi d)

{
CsSL_ init(); /'l Activate Grace config
while (1)
{
_bis SR register(LPM3_bits); /1l Enter LPM3
_del ay_cycl es(10000); /1 10nms del ay
P1OUT &= ~BI TO; /1 Turn off LED on P1.0
}

void timerlsr(void)

{
P1OQUT = BI TO; // Turn on LED on P1.0

}

Build, Load, Run
13. Make sure that your LaunchPad board is plugged into your computer’s USB port. Build

and Load the program by clicking the Debug s button. If you are prompted to save
any resources, do So Now.

14. After the program has downloaded, click the Run button. If everything is correct, the red
LED should flash once every second. Feel free to go back and vary the timing if you like.
Y ou could also go back and re-run the rest of the labs in the workshop using Grace.

If you're so inclined, openthe Lab9/ sr c/ csl foldersinthe project panes and look at
the fully commented C code generated for each of the initialization files. These could be
cut/pasted into a non-Grace project if you choose.

Thiswas avery simple example. In amore complex one, the power of Grace would be
even greater and your project development will be much further along than it would have
been if written entirely by hand. Terminate the debugger, close the Lab8 project and exit
Code Composer.

ST

8-16 Getting Started with the MSP430 LaunchPad - Grace

You're done.




FRAM Overview

Introduction

This module will give you a quick overview of an exciting new memory technology from Texas
Instruments. Although FRAM is not currently available in the Value-Line parts, it is shipping in
other M SP430 devices

Intr cti
Co ompos udio
Initialization and GPIO
Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization
Serial Communications

Grace
FRAM
|: Capacitive Touc

67

Getting Started with the MSP430 LaunchPad - FRAM Overview 9-1



Module Topics

Module Topics

FRAM OVEINVIBIW ..ottt sttt sttt b e bt b e et b e b etk s b etk e st et et e st et be s b ene st et eee 9-1
7T LU = 0] o =S 9-2
FRAM — NeXt GENEration MEMOTY .......cceiiriereseeeeeiee e seestes e sresseseesseseesseseessessesseessessessessessessesseesesssenses 9-3
FRAM CONTOIEN ...ttt ettt b e st b e sttt b et be sttt st nbe e es 9-5
FRAM @N0 the CACHE ......ccviiiieie e ettt sttt sttt e 9-6
IMIPU ettt et b e et b e et b e R e R A e b A bRt b e Rt b et b e et ettt es 9-7
WVEITE SPEOA ...ttt ettt b e bt bt et et e se e b e s b e e bt ehe e aeese e e e b e sbesbesbesaeene e e aneas 9-8

LLOW POWVET ...ttt ettt b e bt et a e e bt e b e e b e et e et e eae e she e ebe et e e ab e eabeeheesbeesbeebeenreennesas 9-9
Increased Flexibility and ENAUIBNCE...........cocooiiiiieiiese et 9-10
REfIOW @and REITEDITTLY ..o e b bt 9-11

9-2 Getting Started with the MSP430 LaunchPad - FRAM Overview



FRAM — Next Generation Memory

FRAM — Next Generation Memory

FRAM - The Next Generation Memory

¢ Why is there a need for a new memory technology?
Address 215t century macro trends — Wireless, Low Power,
Security

Drive new applications in our highly networked world (Energy
Harvesting)

Improve time to market & lower total cost of ownership
(Universal memory)

& What are the requirements for a new memory

technology?

Lower power consumption
Faster Access speeds
Higher Write Endurance
Higher inherent security
Lower total solution cost

Not currently available in Value-Line parts

68

FRAM — Technology Attributes

A = ¢ Non-Volatile — retains data without power
Cermeem + Fast Write / Update — RAM like performance.

" Up to ~ 50ns/byte access times today
- (> 1000x faster than Flash/EEPROM)

¢ Low Power - Needs 1.5V to write compared to
> 10-14V for Flash/EEPROM - no charge

pump

¢ Superior Data Reliability - ‘Write Guarantee’ in
case of power loss and > 100 Trillion
read/write cycles

~a

IMTRON
Auronotive F-KAv nmiemory

=]

Getting Started with the MSP430 LaunchPad - FRAM Overview 9-3



FRAM — Next Generation Memory

Target Applications

+ Data logging, remote sensor applications
{High Write endurance, Fast writes)

¢ Digital rights management
{High Write Endurance — need >10M write cycles)

¢ Battery powered consumer/mobile electronics
{low power)

¢ Energy harvesting, especially wireless
{Low Power & Fast Memory Access, especially Writes)

¢ Battery Backed SRAM Replacement
{Non- Volatility, High Write Endurance, Low power, Fast
Writes)

70

4 Programming Data to FRAM WRITE: Apply voltage to
plate line (write ‘0') or
bit line (write ‘1")

Plate line

Large Induced

jc/ Charge (Q)
it

READ: Apply a Voltage to the
plate line, sense the induced
charge on the bit line

Plate line No dipole flip

Small Induced

Ferroelectric Dipole
Capacitor / Charge (Q}) " Flip
Bit lin J\qu= 0" bit ‘A\ Lg Q = “1” bit

nl

9-4 Getting Started with the MSP430 LaunchPad - FRAM Overview



FRAM — Next Generation Memory

Non-volatile
Retains data without
power

Write speeds

Average active
Power [uAMHZ]

Write endurance

Dynamic
Bit-wise programmable

Unified memory
Flexible code and data
partitioning

All-in-one: FRAM MCU Delivers Max Benefits

Yes No Yes
10ms <10ms 2secs
110 <60 50mA+
799 Unlimited 100,000
Yes Yes No
Yes No No

Data is representative of embedded memory petformance within

device

Yes

1sec

230

10,000

No

No

72

FRAM Controller

FRAM Controller (FRCTL)

Functions of FRCTL.:

standard RAM (but)
*

*
activated

4 Manual or automatic
Seamless and transpa
integration of cache
Error checking and co
(ECC) built into FRAM
cycle

¢ FRAM reads and writes like

Read/Write frequency < 8MHz
For MCLK > 8MHz, wait states

Control Registers

MAB
AN

4 A MPU
' FRAM

rent

Viclation

Controller

FRAM
Memory
Array

rrection

readiwrite ,,MDB

£
7

73

Getting Started with the MSP430 LaunchPad - FRAM Overview



FRAM — Next Generation Memory

FRAM and the Cache

FRAM and the Cache

¢ Built-in 2 way 4-word cache; transparent to the user, always enabled
¢ Cache helps:

& Lower power by executing from SRAM

¢ Increase throughput overcoming the 8MHz limit set for FRAM accesses

¢ Increase endurance specifically for frequently accessed FRAM locations e.g.
short loops (JMPS$)

Active Power Vs MCLK

35
3 /
< /K/ —&—RAM / 100% Cache Hit
225 )e/*/
5
H —®—75% Cache Hit
2 "
515 / Typicall 6% Cache Hit
1
0.5 X%/' 50% Cache Hit
0 i ' —%—0% Cache Hit
1 4 8 16 20 24

MCLK (MHz)

74

Unified Memory

| Before FRAM
Multiple device variants may be required | ©ne device supporting multiple
options “slide the bar as
needed”
16kB Flash 2KE : 1
(Program) SRAM ] .
L 16kB Uhiversal EFERAM
¥
Oft £ :
addfforal e | 14KB Flash SRAM
i Shie L EEPRO as L partitioned as needed
o + Easier, simpler inventory
| ske management
24kB Flash 3 |SRAM + Lower cost of issuance /
< ownership
To get more SRAM you may have + Faster time to market for
to buy more FLASH ROM memory modifications

75

9-6 Getting Started with the MSP430 LaunchPad - FRAM Overview



FRAM — Next Generation Memory

Setting Up Code and Data Memory

¢ Case 1: all global variables are assigned to FRAM

¢ Advantage: All variables are non-volatile, no special handling
required for backing up specific data

¢ Disadvantage: Uses up code space, increased power,
decreased throughput if MCLK > 8MHz
¢ Case 2: all global variables are assigned to SRAM

¢ Advantage: Some variables may need to be volatile e.g.
state machine, frequently used variables do not cause a
throughput, power impact

¢ Disadvantage: User has to explicitly define segments to
place variables in FRAM
¢ Achieving an optimized user experience is a work
in progress...

76

MPU

Memory Protection Unit (MPU)

¢ FRAM is so easy to write to...

¢ Both code and non-volatile data need protection

¢ MPU protects against accidental writes [read, write
and execute only permissions]

¢ Features include:

+ Configuration of main memory in three variable sized
segments

# Independent access rights for each segment
+ MPU registers are password protected

I Control Registers I

ac

wag .
G weu |

Violation
-

Main
Memory
Array/
Controller

MDB
A

——

7

Getting Started with the MSP430 LaunchPad - FRAM Overview 9-7



FRAM — Next Generation Memory

Write Speed
Maximizing FRAM Write Speed

¢ FRAM Write Speeds are mainly limited by communication
protocol or data handling overhead, etc.

¢ Forin-system writes FRAM can be written to as fast as 16MBps
¢ The write speed is directly dependent on:
¢ DMA usage Write Speed Vs CPU Clock
¢ System speed 16001
+ Block size

MegaBytes/second
o
8

Refer to Application

Report titled “Maximizing 01
FRAM Write Speed on 2007
the MSP430FR573x” 000

2 32 64 128 256 512 1024 4096 8192 B 8MHz
No. of bytes in one block DMA transfer O 16MHz
O 24MHz

78

FRAM = Ultra-Fast Writes

Case Example: MSP430FR5739 vs. MSP430F2274
Both devices use System clock = 8MHz
Maximum Speed FRAM = 1.4MBps [100x faster]
Maximum Speed Flash = 13kBps

10,000

Max. Throughput:

1,000

100

13kBps
m .
1

FRAM Flash

7

Getting Started with the MSP430 LaunchPad - FRAM Overview



FRAM — Next Generation Memory

Low Power
FRAM = Low Active Write Duty Cycle

Use Case Example: MSP430FR5739 vs. MSP430F2274
Both devices write to NV memory @ 13kBps
FRAM remains in standby for 99% of the time

Power savings: >200x of flash

10,000

Consumption @ 13kBps:

1,000

FRAM Flash

10

- g

80

FRAM = Ultra-Low Power

Use Case Example: MSP430FR5739 vs. MSP430F2274
Average power FRAM = 720uA @ 1400kBps
Average power Flash = 2200pA @ 13kBps

100 times faster using half the power

Enables more unique energy sources
FRAM = Non-blocking writes )
CPU is not held 2500 17

-~ WFlash

B FRAM

Interrupts allowed 2000 1

" 1400kBps

1500 7
1000 1

500 1 13 kBps

P O e e ol ot

Data Throughput

e o o e e e e

81

Getting Started with the MSP430 LaunchPad - FRAM Overview 9-9



FRAM — Next Generation Memory

Increased Flexibility and Endurance

FRAM = Increased Flexibility

Use Case Example: MSP430FR5739 vs. EEPROM
Many systems require a backup procedure on power fail
FRAM IP has built-in circuitry to complete the current 4 word write

Supported by internal FRAM LDO & Capacitor

In-system backup is an order of magnitude faster with FRAM

F-RAM: ~50,000 writes
EEPROM: 1 write

1000 uF, 130 Fast power down ramp

. . . TIME (s) -
Write comparison during power fail events?
* Source: EE Times Europe, An Engineer’s Guide to FRAM by Duncan Bennett

82

FRAM = High Endurance

Use Case Example: MSP430FR5739 vs. MSP430F2274

FRAM Endurance >= 100 Trillion [10”14]

Flash Endurance < 100,000 [105]

Comparison: write to a 512 byte memory block @ a speed of 12kBps
Flash = 6 minutes
FRAM = 100+ years 100,000.000,000

10,000,000,000

1,000,000,000
100,000,000 -
10,000,000
1,000,000
100,000
10,000
1,000
100 -

10

114,000
years

1
[min]
FRAM Flash

83

Getting Started with the MSP430 LaunchPad - FRAM Overview




FRAM — Next Generation Memory

Reflow and Reliability
What about Reflow?

¢ Tl factory programming is not available for the MSP430FR57xx devices

¢ Customer and CMs should program after reflow or other soldering
activity

¢ Tlwill provide reference documentation that should be followed during
reflow soldering activity

¢ Hand soldering is not recommended. However it can be achieved by
following the guidelines
v Be mindful of temperature: FRAM can be effected above 260 deg

C for long periods of time

v Using a socket to connect to evaluation board during prototyping

is also a best practice

84

FRAM: Proven, Reliable

+ Endurance

+ Proven data retention
to 10 years @ 85°C

+ Less vulnerable to attacks
+ Fast access/write times
+ Radiation resistance

& Terrestrial Soft Error Rate
(SER) is below detection limits

+ Immune to magnetic fields
¢ FRAM does not contain iron!

For more info on
TI's FRAM technology

832

Getting Started with the MSP430 LaunchPad - FRAM Overview 9-11



FRAM — Next Generation Memory

9-12 Getting Started with the MSP430 LaunchPad - FRAM Overview



Capacitive Touch

Introduction

This module will cover the details of the new capacitive touch technique on the MSP430. In the
lab exercise we will observe the Capacitive Touch element response, characterize the Capacitive
Touch elements and implement a simple touch key application.

Intr cti
Co ompos udio
Initialization and GPIO
Analog-to-Digital Converter
Interrupts and the Timer
Low-Power Optimization
Serial Communications

Grace
FRAM
|: Capacitive Touc

Whatis Capacitive Touch?
86

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10-1



Module Topics

Module Topics

(O T o - Yoz £ 1YL= o 11 (o o SR 10-1
T LU= 0] o =R 10-2
L@ Vot | 10 o0 o o 10-3

CapaCitive TOUCh MELNOUS..........ccviiiiiececec ettt saeer e eenes 10-3
CapaCitiVE MEASUIEMEN .......coveieieesiesteseeereeeeteseestestestessesseesee s e eessessessesseeseeseessessenseseesaesrenneesennennens 10-4
L@ N 4! o] =00 g1 = 0] 10-5
D7 - 11 RS S 10-5
Change iN CaPBCITANCE ......cc.eiiiierie ettt h ettt e e s ae bt sb e bt ebe e e et e seesbesbesbesbesneeneeeaneas 10-6
CRENGE N COUNLS. ...ttt ettt ettt s b e bt ae e e e eeseesbesbeeaeehe e e e neeseesbesbesaesbesaeeneeneaneas 10-6
RODUSENESS. ...ttt ettt bbb ae e a e e e b e s b e s bt eb e s aeehe e e et e sbesbesbesaeeneennaneas 10-7
oIS S 1 00100 1E ol USSR 10-7
PiNOSC CPU OVEINEAA ..ottt sttt et bbb e ne e e 10-8
O 110101 1= 0101 1= 1 o] O 10-9
L@ g T TaTo S | 01U ) 10-9
DULY CYCIE VS, CUITENML .....eeneeie e cteste st ee s ettt se e et e stestesaesaeeseeneeneese e sesaesrestesneeneeneensenes 10-10
o1 A @Y= VT S 10-11
Element DEfINITION ......ooiiiiieere bbbttt 10-11
SENSON DEFINITION ...ttt bttt st et st ne e e 10-12
ST [10] 0072 Y USSR UUPTUPOR 10-12
BOOSLEr PACK LBYOUL. ..ottt sttt st se et bbb e ae e e e s 10-13
Lab 10: CapaCitiVe TOUCK. .......eiuiiieieeeeie ettt bbb sbe e e b e eesbesbesaesbe e e e e s 10-15
Lab10a— Observe EIemMent REPOMNSE. ..ottt sie e et sae e b sae e e e s 10-17
Lab10b — Characterize the EIEMENLS ..ot s 10-22
Lab10c — Capacitive Touch Project from aBlank Page.........cccvvvvveveierecesere e 10-27

10-2

Getting Started with the MSP430 LaunchPad - Capacitive Touch



Capacitive Touch

Capacitive Touch

What is Capacitive Touch?

A change in Capacitance ...

¢ When a conductive element is present - Finger or stylus
» Add C3 and C4, resulting in an increase in capacitance C1 + C2 + C3||C4
* This becomes part of the free space coupling path to earth ground

¢ When the dielectric (typically air) is displaced
* Thick gloves or liquid results in air displacement and change in dielectric
 Capacitance is directly proportional to dielectric, capacitance (C2) increases
(air ~1, everything else™> 1)

Options ...
87

Capacitive Touch Methods

MSP430 Capacitive Touch Methods

< 3uA/Button

Pin oscillator method
(PinOsc with internal RO)
No external components required

Timer used
Currently MSP430G2xx2 and MSP430G2xx3

-

RO method e 10uA/Button
Most robust against interference i “,‘ -
Timer used, comparator used "\"/:‘“"W:T | “ﬁ—_ﬂ—a
MSP430 devices with comparator T s e

RC method @ 1uA/Button

Lowest power method \

Supports up to 16 keys \* MSPA30
GPIO plus timer used C_rno— Py
Any MSP430 device 7]v— % Capture

Capacitive Measurement ...
&

Getting Started with the MSP430 LaunchPad - Capacitive Touch

10-3



Capacitive Touch

Capacitive Measurement

Capacitive Measurement with the MSP430

A change in capacitance
equals as a change in timer counts

+ Relaxation Oscillator (RO) R e e W T R

Measure frequency of multiple R/C
charge/discharge cycles

Measurement window is fixed

Capacitance is a function of timer LIS e
frequency :
V8S +
¢ Resistor Capacitor (RC) vop = : N
Measure charge/discharge time from ﬁ"TARi/TTAR'
Vit+ to Vit- and Vit- to Vit+ [ S———
The timer frequency is fixed
Capacitanceis a function of the RC
charge/discharge time Yo
S NN
e e i

RO Implementations ...
]

10-4

Getting Started with the MSP430 LaunchPad - Capacitive Touch



Capacitive Touch

RO Implementations

MSP430 RO Implementations

+ Requires: —
4 ATimer for the gate time
4 ATimerto count cycles
4 APin Oscillator (MISP430G2x) or
Comparator for the relaxation oscillator
# Very low power consumption
& Sensitivity is limited by the gate time:
longer = greater sensitivity
# Slow scan rates: the longer the gate
time the longer it takes to scan the
elements

# High noise immunity
4 Inherentlyimmune to low frequency
noise
4 Hysteresis in relaxation oscillator
provides high frequency noise immunity

RO Details ...
20
Details
RO Implementation Details
) ) L —i TMERAX |
+ Relaxation Oscillator - (aVaeuu—

# Comparator Gty g [“F -
¢ Reference ) __Q’,e T "*' ‘_L_LD_J
¢ Feedback circuit *' @ :‘ e

¢ Timer for frequency counter . L= N

¢ Timer for measurement '

window
(SLOW)
¢ Frequency SwcLKx e

Measurement | me:sursmantwlndnw

& Fisafunctionof C :g‘m | ZCTPIT““:

# For a given interval the A4 ¥ (FAST)

an increase in capacitance Oscilator Output Signal
(CAQUT = TACLK)
Change in Capacitance ...
91

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10-5



Capacitive Touch

Change in Capacitance

Interpreting Change in Capacitance RO

Absolute Threshold: Touch Detection,
Missed Detection, False Trigger

]

Qo <

\

/

Measured
Capacitance

Environmental

Changes Relative Threshold with Baseline Tracking: No false
triggers and accounts for environmental drift.

< Base
Capacitance

Change in Counts ...
92

Change in Counts

Interpreting Changes in Counts RO

Capacitance

Timer Counts

Inverse Relationship

RO Robustness ...

93

10-6 Getting Started with the MSP430 LaunchPad - Capacitive Touch



Capacitive Touch

Robustness

RO Robusthess

& Limit the variables to capacitance
— DCO calibrated constants +/-6% over Vcc and temperature
— Integrated Resistance varies from 20Kohms to 50Kohms

SMCLK | R Capacitance Change | Gate Time | Change in | Margin (threshold
(Hz) (ohms) | (11pF-11.22pF) (ms) Counts is 150)
1.00E6 | 35000 2% 8.192 301 50.2%
1.06E6 | 35000 2% 7.728 284 47.2%
0.94E6 | 35000 2% 8.7415 320 53.1%
1.06E6 | 50000 2% 7.728 199 24.6%
0.94E6 | 20000 2% 8.7415 560 73.2%

RO Noise Immunity ...

94

Noise Immunity

RO Noise Immunity

¢ Hysteresis

¢ Noise must occur at the relaxation oscillator frequency in order to
influence measurement

¢ Noise must be fairly large in magnitude to overcome hysteresis
(typically 1V)
¢ Natural Integration and Filtering

¢ Gate window of milliseconds represents many charge/discharge
cycles of the relaxation oscillator

¢ Example: 2mS*1.8Mhz = 3600 cycles (samples)
¢ Baseline Tracking automatically calibrates system
¢ Slowly tracks changes, filtering noise

PinOsc CPU Overhead ...

95

Getting Started with the MSP430 LaunchPad - Capacitive Touch

10-7



Capacitive Touch

PinOsc CPU Overhead
RO CPU Overhead Using PinOsc

¢ 99% of the measurement time is performed in a low power mode
with no CPU interaction

+ RO integration performed 100% in hardware
+ Calculation dependent on humber of sensors, typically <<1%
+ CPU available for other tasks

[ Maex

RC Implementation ...
%

10-8 Getting Started with the MSP430 LaunchPad - Capacitive Touch



Capacitive Touch

RC Implementation

MSP430 RC Implementation

¢ Timer and comparator or Schmidt trigger
GPIO

& Timer capture inputs
& Comparator Inputs
¢ Simple interface
# Two sensor scan share a single resistor
¢ Very, very low power consumption
¢ Sensitivity is limited to clock speed
& 2xx family 16 Mhz
& 5xx 25MHz
4 TimerD 256Mhz
¢ Thick laminates require faster clock or
other additional processing
¢ Fast scan rates
# Poor noise immunity and not

recommended for applications that are
connected to mains

Changes in Counts ...
57

Change in Counts

Interpreting Changes in Counts: RC

Capacitance

Timer Counts

Direct Relationship

Duty Cycle vs. Current ...
98

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10-9



Capacitive Touch

Duty Cycle vs. Current

Importance of Duty Cycle vs. Current

PinOsc RO Current | Gate
PinOsc 70uA ams

Sleep(LPM3) | 0.7uA 96ms

1 Sensor @ 2Hz Interval
Sensor =70uA*0.008 ~ 0.60uA
Sleep =0.7uA*0.992 ~ 0.70uA
. Average = ~1.30uA

Processing insignificant

Current

~Gate Time— leep Time (LPM3)

1Scan R:

Library Overview ...
99

10-10

Getting Started with the MSP430 LaunchPad - Capacitive Touch



Capacitive Touch

Library Overview

Capacitive Touch Library Overview

| USER DEFINED APPLICATION LAYER |

—_ i

[} = o —_
i § | ¢ g < || £52
2 z 2 z = 22 ||a8s
es & °© Ea [|oFO
a [ Dominant Element |
5 memmmwﬁmmmw—————————w

Baseline Tracking
| Filter HAL Selection ]

P

= =i =i
g ) a g 5 %I
{ ;I = §| gl © 2

2 g | 2 2 £ £

= < 1%} < < | |
< Bl o 2 S5 « 9
T g % z e e S o}

< o] T s s ( Z

8 £ ) 8 8 & &

S, o x f | o

o e} o o 4

3 4 & 14
; | USER DEFINED HW CONFIGURATION |
T Tmer Comparator Watchdog . Pin
L1 (AX/BX) || (COMPX) | Timer (WDTX) Oscillator

Element Definition ...
100

Element Definition

Library Configuration Element Definition

structure.c
//Pin0Osc Middle P2.5

Element Definition :
const struct Element middle =
+ Port Definition {

+ Bit Definition .inputPxselRegister = (uint8_t *)&P2SEL,
.inputPxsel2Register = (uint8_t *)&P2SELZ,
.inputBits = BITS,

.threshold = 0

structure.h

extern const struct Element middle;

Oooopoooop
TR

SpspsgspspsgsgsgsEs)
=l !

Sensor Definition ...
101

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10-11



Capacitive Touch

Sensor Definition

Library Configuration Sensor Definition

structure.c

SenSOI' DEfinition const struct Sensor wheel =
« Elements within Sensor 1
» Gate Source: SMCLK = 1Mhz
+ Gate Interval: 8192 (~8.2ms)

.halDefinition = RO_PINOSC_TAO_WDTp,
.humElements = 4,
.baseoffset = 0,

// Pointers to elements

.arrayPtr[0] &up,

(SLOW) .arrayPtr[1l] = &right,

ACLK wDpT
.arrayPtr[2] = &down,

Yy .arrayPtr[3] = &left,

measurement window

) 1st TAR | 2nd TAR
SMCLKx 1 Capture ! Capture .measGateSource= GATE_WDT_SMCLK,

¥ ¥ (FAST)

// Timer Information

// 0->SMCLK, 1-> ACLK
.accumulationCycles= WDTp_GATE_819%2

Oscillator Output Signal }
(CAOUT = TACLK)

structure.h

extern const struct Sensor wheel;

Summary ...
102

Summary

Summary

¢ Capacitive Touch solutions can be implemented in a number of
ways on the MSP430
¢ Tradeoff between available peripherals, IO requirements, sensitivity, and
power consumption
¢ Capacitive Touch 10 (PinOsc function of the digital IO peripheral) in the
Value Line family is the most recent peripheral addition.
¢ No external components or connections
¢ Low power implementation of the relaxation oscillator
¢ The Capacitive Touch library offers several levels of abstraction
for different capacitance measurement applications
¢ Raw capacitance measurements
¢ Measurements with integrated baseline tracking
¢ Button, wheel, and slider abstractions

¢ Download library and examples from

Layout...
103

10-12 Getting Started with the MSP430 LaunchPad - Capacitive Touch



Capacitive Touch

Booster Pack Layout

Capacitive Touch BoosterPack Layout

¢ 6 touch sensors
¢ Cap touch 10s create RO (PinOsc)
¢ 9LEDs

Lab 10 ...

P2.0
(proximity)
P2.5
Wheel (middle)
P2.4 (up)
P2.1 (left)
P2.3 (right)
P2.2 (down)

104

Getting Started with the MSP430 LaunchPad - Capacitive Touch

10-13



Capacitive Touch

10-14 Getting Started with the MSP430 LaunchPad - Capacitive Touch



Lab 10: Capacitive Touch

Lab 10: Capacitive Touch

Objective

The objective of thislab isto learn the hardware and software utilized by the capacitive touch

technique on the M SP430 LaunchPead and Capacitive Touch BoosterPack.

Lab10a: Observe element response
Lab10b: Characterize the elements

-

Lab10c: Implement a simple touch ke}
application

Lab10: Capacitive Touch

TEXAS
INSTRUMENTS

§ o

105

Getting Started with the MSP430 LaunchPad - Capacitive Touch

10-15



Lab 10: Capacitive Touch

Procedure

Install Hardware and Software

1

Y ou will need the Capacitive Touch BoosterPack (430BOOST-CAPTOUCH1) available
here for US$10.

Before the BoosterPack arrives, solder the male-male Molex connectors provided in the
LaunchPed kit to the pads provided on the printed circuit board (PCB). The 1.5 version of
the kit already has the connectors soldered to the board.

Download and install the following files:
e BoosterPack User’s Guide - http://www.ti.com/lit/pdf/dlau337
e Demo code, GUI, etc - http://www.ti.com/litv/zip/d ac490
e Capacitive Touch Library - http://www.ti.com/litv/zip/d ac489
e CT Lib Programmer’s Guide - http://www.ti.com/litv/pdf/daad90
o Getting Started with Capacitive Touch - http://www.ti.conV/lit/saa491

When the BoosterPack arrives, make sure the LaunchPad board is disconnected from
your computer or other power source. Carefully remove the Value-Line part currently in
the DIP socket on the LaunchPad PCB with a small screwdriver and put it away for safe-
keeping. The BoosterPack comes with a pre-programmed M SP430G2452 in a 20-pin DIP
package. Carefully insert it correctly into the DIP socket on the LaunchPad PCB. The
pins are quite brittle and will not tolerate being bent ... if you have a DIP insertion tool,
you might want to use it.

Plug the BoosterPack PCB onto the top of the Molex male-male pins you soldered
earlier. Make sure the Texas Instruments logo is nearest the buttons on the LaunchPad
board.

Plug the board into your computer’s USB port using the cable included with the
LaunchPad. Y ou should see the LEDs on the Capacitive Touch surface illuminatein
sequence. Touch your fingertip to the rocket button in the center circle and note the LED
under it and the red LED on the LaunchPad PCB light. Touch again to turn them off.

Touch between the inner and outer circle to momentarily illuminate LEDs on the outside
ring.

In the SLAC490 folder that you downloaded, find the Sof t war e folder and the
CapTouch_Boost er Pack_User Experi ence_GUJ folder beneath that. Double-
click onthe CapTouch_Boost er Pack_User Experi ence_QGUJ . exe filethat you

find there. Give the tool afew momentsto link with your LaunchPad, and then touch any
of the Capacitive Touch buttons. Note that gestures are al so recognized.

Exit the GUI tool when you are done.

10-16

Getting Started with the MSP430 LaunchPad - Capacitive Touch


https://estore.ti.com/430BOOST-CAPTOUCH1-Capacitive-Touch-BoosterPack-P2361.aspx�
http://www.ti.com/lit/pdf/slau337�
http://www.ti.com/litv/zip/slac490�
http://www.ti.com/litv/zip/slac489�
http://www.ti.com/litv/pdf/slaa490�
http://www.ti.com/lit/slaa491�

Lab 10: Capacitive Touch

Labl0a — Observe Element Reponse

Import Project

8. Inthislab and the next, we will be observing the response of the Capacitive Touch
elements. We will also dig into the code to see how it operates. Finally in the last |ab,
we' Il get achance to get back to writing some code.

Open Code Composer Studio with your usual workspace and maximize CCS.

9. Import the Lab10a project by clicking Project - Import Existing CCS/CCE Eclipse
Project on the menu bar.
Changethe directory to C: \ MSP430_LaunchPad\ Labs\ Lab10a. Make surethat
the checkbox for Lab10ais checked in the Discovered Projects area and click Finish.

10. Expand the Labl10a project in the Project Explorer pane by clicking on the + next to the
project name.

Inspect Structure Files

11. Double-click onst r uct ur e. c inthe Project Explorer pane to open the file for editing.

Thefileissplit into two main sections: the top portion is the Element section and the
bottom is the Sensor section.

In the Element section you' I seeindividual structuresfor each of the six buttons on the
Capacitive Touch BoosterPack circuit board: down, right, up, left, middle and proximity.
Inside these structures, the port/pin definition is made that assigns M SP430 GPIO
hardware to the defined button and athreshold is set that defines what change in
operation is an event. Note that the threshold is set to zero for the middle and proximity
elements. For the wheel or slider implementation, the maxResponse variable normalizes
the capacitive measurement to a percentage, so that the dominant element in the sensor
can be identified. This variable has no function for single elements.

In the Sensor section, groups of Elements are defined as sensors like the whed,
one_button and proximity sensor. These structures define which and how many Elements
will be used, what sensing method is used, which clock is used and how many cycles
over which the measurement should be made.

Thisfile has been created especially for the BoosterPack button layout. When you create
your own board, this file must be modified.

Closestructure. c.

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 17



Lab 10: Capacitive Touch

12. Double-click onst r uct ur e. h in the Project Explorer pane to open the file for editing.

Thisfile contains a number of sections. Many of the definitions used by the Capacitive
Touch library are done here and made external. There are also several user-defined flags
that allow you to tailor the code for your application. There are several definitions that
allow you to trade RAM size for Flash size conserve memory and select M SP430 variant.
Vaueline parts typically have small Flash sizes and much smaller RAM sizesto achieve
low cost, so using this space effectively isadesign imperative.

Check out the three warnings at the bottom of thefile.

Thisfile has been created especially for the BoosterPack button layout. When you create
your own board, this file must be modified.

Closestructure. h.

For more detailed information on these files, look in user guides SLAA490 and
SLAA491.

Open LAB10a.c

13. Open Lab10a. c inthe Project Explorer pane to open thefile for editing. The purpose of
this code isto let us view the proximity sensor, middle button and wheel sensor response
when they are touched.

Note the following:
e CTS Layer. hisincluded to provide accessto the Capacitive Touch APIs
e Threedefined variablesto hold the button/sensor raw count values
e Watchdog timer, DCO cadlibration, SMCLK and LFXT1 setup
e Both GPIO ports are set to outputs and zero iswritten to al pins

e Aninfiniteloop where calls are made to measure the timer count (and the
capacitance) of the proximity sensor, middle button and wheel sensor. The AP
call to TI_CAPT_Raw() represents the lowest level of abstraction available from
the Capacitive Touch library and it is particularly useful for characterizing the
behavior of the buttons and sensors. Zeroing the threshold variable in structure.c
also disables any further abstraction by Capacitive Touch functions.

10 - 18 Getting Started with the MSP430 LaunchPad - Capacitive Touch



Lab 10: Capacitive Touch

Build, Load

14. Make sure your LaunchPad board is connected to your PC and that the Capacitive Touch
BoosterPack board is securely connected. Build and load the program by clicking the
Debug button on the menu bar.

Setup Watch Window and Breakpoint Action

15. In the Expressions pane, right-click and select Add Global Variables. One at the time,
select the variables in which the raw counts will be stored; proximityCnt, buttonCnt and
wheelCnt and click OK. Expand the wheel Cnt array so that you can see al four elements.

16. Findthe __no_operation(); lineof codein Labl0a.c and place a breakpoint there.
We want the code to stop here, update the watch window and resume. To do that we'll
change the behavior of the breakpoint. Right-click on the breakpoint symbol (left of the
line of code) and select Breakpoint Properties ... Click on the value “ Remain Halted” for
the property “Action”. Change the action to “ Refresh all Windows” and click OK.

Run

17. Click on the Run button to run the program. Y ou should see the values in the watch
window highlighted in yellow as they update. Black denotes unchanged values.

= P2.0 (proximity)
Wheel — P2.5 (middle)
P2.4 (up) —
P2.1 (left) —
P2.3 (right) =
P2.2 (down) |

Bring your finger close to the board as you watch the proximityCnt variable. It should
start out around 33000 and drop to around 31000 as you near and touch the board.

Watch the buttonCnt variable as you touch the middle button. The value should drop as
you touch it.

Thewhed is comprised of the up, l€eft, right and down elements. Watch the response as
you move your finger around the wheel. 0=up, 1=right, 2=down and 3= l&ft.

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10- 19



Lab 10: Capacitive Touch

Graphs

18. A graph would make these changes easier to see and CCS provides that functionality.

Suspend the code (not Terminate) by clicking the Suspend ' putton. Add agraph by
clicking Tools > Graph - Single Time on the menu bar. When the Graph Properties
box appears, make the changes shown below.

Graph Properties §|
Property Yalue
= Data Properties
Acquisition Buffer Size 1
Disp Data Type 16 bit unsigned integer
Index Increment 1
3 _Value ]
Sampling Rate HZ 12
Start Address &buttonCnt
[= Display Properties
Axis Display W true
Data Plot Style Ling
Display Data Size 50
Grid Style Major Grid
Magnitude Display Scale Linear
Time Display Unit sample
|Use Dc Yalue For Graph || false

and click OK. The graph should appear at the bottom of your screen. If you don't like the
colors, you can change them by right-clicking on the graph and selecting Display
Properties. But be careful, you can render the datainvisible.

Click the Run button and watch the graph of the buttonCnt variable. Allow afew
moments for the graph to build. Y ou should see minor fluctuationsin the variabl e that
look large in the graph since it is auto-sizing the y-axis. Thiswill change when you touch
the middle Capacitive Touch button. The graph below shows three touches of the button.

The graph is plotting the number of relaxation oscillator cycles within a fixed duration of
time (the measurement window). As the capacitance increases (when you come near to
the electrode), the frequency of the relaxation oscillator decreases and the number of
cycles also decreases.

Console | foe Single Time -4 52
3550 1
3500
3450
3400
3350
3300

3250 1
3200 |
I

1213.5 1216 1218.5

T T T —
1201 1203.5 1206 1208.5 12

11

Getting Started with the MSP430 LaunchPad - Capacitive Touch



Lab 10: Capacitive Touch

19. Suspend the code (not Terminate) by clicking the Suspend " button and then click the
X on the Single-Time graph tab to delete the graph. Now we can add a graph of the
proximityCnt variable. It s possible to export and import graph properties to speed the
process up, and we' |l use that here. Add a graph by clicking Tools - Graph - Single
Time on the menu bar. When the Graph Properties box appears, click the Import button
and select the cts_|ab_proximity.graphProp file from
C:\MSP430_L aunchPad\L abs\Lab10a and click Open. Sweet, huh? Click OK in the
Graph Properties box and the graph should appear at the bottom of your screen.

20. Click the Run button and watch the graph of the proximityCnt variable. Allow afew
moments for the graph to build. The behavior should look much the same as the middie
button did. Bring your finger near to the board and watch the response on the graph. The
graph below shows three close approaches to the board.

32160
T T T T T T
291 298.5 308.5 313.5 318 318.5 321 323.5

Console | fla Single Time -5 3 ErRY
sample

32460
32410 2 7
32360
32310
32260
32210
T T T T T T T T
283.5 296 301 3035 308 311

21. Experiment as much as you like, but only display one graph at the time. Remove the

watched expressions by clicking the Renmove Al | Expr essi ons button % above
the Expressions pane. Click the Ter mi nat e button to stop debugging and return to the

“CCS Edit” perspective. Collapse the Labl0a project by clicking the — next to the project
name in the project pane. Close any open editor windows.

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10-21



Lab 10: Capacitive Touch

Lab10b — Characterize the Elements

In Labl0awe observed changes in capacitance. In Lab10b we will focus on a‘touch’, setting an
appropriate threshold for detecting atouch. We will usethe TI_CAPT_Custom function to
measure the deviation in capacitance from the baseline. The library will track the baseline
capacitance with each measurement. This configuration is only interested in fast (relative) and
large magnitude increasesin capacitance. Decreases and low increases in capacitance are treated
as environmental changes and are used to update the baseline.

Import Project

1

Import the Lab10b project by clicking Project > Import Existing CCS/CCE Eclipse
Project on the menu bar.

Changethe directory to C: \ MSP430_LaunchPad\ Labs\ Lab10b. Make surethat
the checkbox for Lab10b is checked in the Discovered Projects areaand click Finish.

Expand the Lab10b project in the Project pane by clicking on the + next to the project
name and open st r uct ur e. h for editing.

If you' re going to do baseline tracking (as we are in this lab), RAM space needsto be
alocated for it to function, for each element (there are 6 on the BoosterPack). At line 50,
uncomment the line:

/1 #define TOTAL_NUMBER OF ELEMENTS 6

Of course, this uses precious RAM space. If you are not using baseline tracking,
commenting thisline out will save RAM.

Closeand savest ruct ur e. h.

Openst ruct ur e. c for editing. Remember from Lab10athat in order to characterize
an element, its threshold should be set to zero. Find the threshold values for the
proximity sensor and middle button. Verify they are zero.

Close and save (if needed) st ruct ure. c.

Open Lab10b.c for editing and make sure that only the TI_CAPT_Custom() call for the
proximity sensor in the while() loop is uncommented. The calls for the middle button and
wheel should remain commented out for now. Save your changes if necessary.

whi
{

le (1)

TI _CAPT_Custom(&proximty_sensor, &roxinmtyCnt);
/1 TI _CAPT_Cust onm{ &ne_but t on, &utt onCnt) ;

/1 TI _CAPT_Cust on( &heel , wheel Cnt) ;
__no_operation();

10 - 22

Getting Started with the MSP430 LaunchPad - Capacitive Touch




Lab 10: Capacitive Touch

Build, Load

5. Make sure that Lab10b isthe active project, then build and load the program by clicking
the Debug button on the menu bar.

Setup Watch Window and Breakpoint Action

6. If you've closed the Expressions pane, click View - Expressions from the menu bar. In
the Expressions pane, right-click and select Add Global Variables. One at the time, select
the variables in which the raw counts will be stored; proximityCnt, buttonCnt and
wheelCnt and click OK. Expand the wheel Cnt array so that you can see al four elements.

7. Findthe _no_operation(); lineof codeand place a breakpoint there. We want the
code to stop here, update the watch window and resume. To do that we'll change the
behavior of the breakpoint. Right-click on the breakpoint symbol (left of the line of code)
and select Breakpoint Properties ... Click on the value “Remain Halted” for the property
“Action”. Change the action to “ Refresh all Windows" and click OK.

Graphs

8. Let'sdart with the proximity sensor. Add a graph by clicking Tools 2 Graph - Single
Time on the menu bar. When the Graph Properties box appears, click the Import button,
and then locatect s_| ab_proxi mty. graphPropin
C:\ M5P430_LaunchPad\ Labs\ Lab10b. Select it, click Open and then click OK in
the Graph Properties window.

9. Run the program and allow afew moments for the graph to build. Take alook at the table
below. Let’'s characterize the different responses of the proximity sensor: the noise when
no oneis near the sensor, when your finger is 2cm and 1cm away and finally when you
touch the sensor. Remember that the element is not only the pad, but also the connection
(trace) to the pad. The proximity sensor wraps the entire board. Write what you see on the
graph in the table below. Our results are shown for comparison.

Observed Noise 2cm lcm Touch

Your Results

Our Results 0-50 30-80 75-140 1250-1325

Gate Time: ACLK/512 (default)

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 23



Lab 10: Capacitive Touch

10. Click the Terminate button to stop debugging and return to the “ CCS Edit” perspective.

11. Open Lab10b. c for editing and look in thewhi | e() loop. Comment out the
TI _CAPT_Cust on() call for the proximity sensor and uncomment the one for the
middle button.

while (1)

{
/1 TI _CAPT_Custon( &proxi mty sensor, &roximtyCnt);
Tl -CAPT Custon( &one_butt on, &uttonCnt);
/1 TI _CAPT_Cust om( &heel , wheel Cnt) ;
__ho_operation();

}

Save your changes. Build and load the program.

12. Click on the single-time graph tab. Click on the Show the Graph Properties button =
on theright side of the graph. It s funny, but thisis not the same thing as right-clicking on
the graph and selecting Display Properties. When the Graph Properties box appears, click
the Import button, and then locatect s_| ab_but t on. gr aphPr op in
C:\ M5P430_LaunchPad\ Labs\ Lab10b. Select it, click Open and then click OK in
the Graph Properties window.

13. Run the program and allow afew moments for the graph to build. Now we'll characterize
the middle button touch sensor similar to what we did with the proximity sensor. Our
results are shown for comparison.

Observed Noise | Light Touch | Heavy Touch M olex
Connector
(right side)
Your Results
Our Results 67-73 326-330 371-381 115-124

Gate Time: SMCLK/512 (default)
14. Click the Terminate button to stop debugging and return to the editing perspective.

10-24

Getting Started with the MSP430 LaunchPad - Capacitive Touch



Lab 10: Capacitive Touch

Changing the M easurement Window Time
15. Openstruct ur e. ¢ for editing and close any other open editor windows.

The MSP430G2452 and Capacitive Touch BoosterPack hardware design implements an
RO with the PinOsc peripheral. The hardware abstraction in the Capacitive Touch
libraries utilizes Timer_A2 and WDT+ for clock sources. The Capacitive Touch
measurement window or “gate time” is a function of the WDT+ peripheral.

The WDT+ can be sourced by the ACLK and SMCLK.

The gate time can be varied among the following settings: 64, 512, 8192 and 32768
cycles.

Below isthe sensor structure for the proximity sensor:

const struct Sensor proximty_sensor =
{
.hal Definition = RO_PI NOSC_TAO_WDTp,
.nuntl enents = 1,
. baseOf fset = 5,
/1 Pointer to elements

.arrayPtr[0] = &proximty, /1 point to first el enent
/1 Timer Infornation

/'] . measGat eSour ce= GATE_WDT_SMCLK, /Il SMCLK

. measGat eSour ce= GATE_WDT_ACLK, /1 ACLK

/'] . accunul ati onCycl es= WDTp_GATE_32768 //32768

/1. accunul ati onCycl es= WDTp_GATE_8192 /1 8192
.accunul ati onCycl es= WDTp_GATE_512 /1512 defaul t
/] .accunmul ati onCycl es= WDTp_GATE_64 /164

}s

The data taken in the previous steps used the default gate timings. Make the following
changesto st r uct ur e. ¢ and we'll repeat those measurements.

Intheone_but t on structure in the sensor section, uncomment:

.accumul ati onCycl es= WDTp_GATE_8192 /1 8192
and comment out:
.accunul ati onCycl es= WDTp_GATE 512 /1512, default

Do the samethinginthe pr oxi m ty_sensor structurein the sensor section. We'll
leave the source unchanged for both sensors.

Save your changes.

These settings will select SMCLK/8192 for the one_button and ACLK/8192 for the
proximity sensor.

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10-25



Lab 10: Capacitive Touch

Build, Load, Run and Graph

16. Build and load the program. Make sure your graph is displaying datafor the middle
button. Run the program and fill in the table below. Our results are shown for comparison

Observed Noise | Light Touch | Heavy Touch M olex
Connector
(right side)
Your Results
Our Results 70-120 3800-4000 4270-4500 1200-1280

Gate Time; SMCLK/8192

17. Click the Terminate button to stop debugging and return to the editing perspective. Open
Lab10b. c for editing and ook in thewhi | e() loop. Comment out the
Tl _CAPT_Cust om() call for the middle button and uncomment the one for the
proximity sensor. Save your changes.

18. Build and load the program. Make sure your graph is displaying data for the proximity
sensor. Run the program and fill in the table below. Our results are shown for comparison

Observed Noise 2cm 1cm Touch

Your Results

Our Results 54900-5510 55390-55490 | 60300-60400 4000-4400

Gate Time: ACLK/8192

Note: Most of these valuesare very close to the 16-bit (65535) limit. If fact the Touch
measurement we made rolled the counter past the limit. Watch for thiskind of
behavior during your experiments.

19. Compare these results with your earlier tests. The longer the gate time, the easier it isto
differentiate between noise and touch or proximity. There are many more measurements
that you could make here. Y ou could check the effect of varying the gate time on the
responsiveness of the buttons. Or you could test the effect on power consumption. These
aretests that you will likely want to pursue with your design before finalizing it.

Click the Terminate button to return to the “CCS Edit” perspective. Close any open editor
windows and minimize the Lab10b project.

10 - 26 Getting Started with the MSP430 LaunchPad - Capacitive Touch



Lab 10: Capacitive Touch

Lab10c — Capacitive Touch Project from a Blank Page

In this section, we'll learn how to build a simple Capacitive Touch project from the beginning,
with ablank folder. We'll use the middle button on the BoosterPack board to light the middle
LED and thered LED on the LaunchPad board.

Copy/Create Files

1. Using Windows Explorer, open the Lab10c folder in
C:\ M5P430_LaunchPad\ Labs and observe that it's empty.

2. Open the folder containing the SLACA89 files. Copy the Li br ar y folder and paste it
intothe Lab10c folder. Thisisthe Capacitive Touch library folder.

3. Againinthe SLAC489 folder, openthe Getti ng_St art ed_Pr oj ect s/ Sour ce/
RO_PI NOSC_TAO_WDTp_One_But t on folder. Copy both thest r uct ure. c and
. h filesand paste them into the Lab10c folder. We could have used any of the
examples, but for the purposes of the lab, let’ s choose these. These structure files contain
all the definitions and structures for the entire Capacitive Touch BoosterPack board.
Rather than create these files from scratch, we're going to modify them to meet our
needs, which iswhat you'll likely do when you implement your own design.

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 27



Lab 10: Capacitive Touch

Create Project

4. In Code Composer Studio, create a new project by clicking:
File > New - CCS Project

Make the sel ections shown below (your dialog may look slightly different than this one).
Make sureto click Enpty Proj ect, and then click Fi ni sh.

® New CCS Project (=13

CCS Project o®

Create a new CCS Project. @

Project name: | Lab10c |

Qutput type: | Executable w |

[Juse default location

Location: |C:'NSP—‘BD_LaunchPad'd_abs'd_abIDc | ’ Browse... ]
Device
Famiy: | MsP430 v|
Variant: | 2452 ~ | | Mspa30c2452 v|
Connection: |TI MSP430 USE 1 [Default] vl

» Advanced settings

w Project templates and examples

| Creates an empty project fully initialized for
the selected device.

= E Empty Projects

r

E Empty Assembly-only Project

[ Empty RTSC Project

[& Empty Grace (MSP430) Project
=-[Z] Basic Examples

[& Blink The LED

E Hello World

=
[H-i=] Grare Fvamnles

|

£

® Bac ext [ Finish H Cancel l

5. Expand the Lab10c project in the project pane to see that all of our filesin the Lab10c
folder have been automatically added to the project, along with the nai n, c file created
by Code Composer.

10- 28 Getting Started with the MSP430 LaunchPad - Capacitive Touch



Lab 10: Capacitive Touch

Build Properties
6. Right-click on Lab10c in the Project Explorer pane and select Properties.

Under Build / MSP430 Compiler, click on the + next to Advanced Options and then click
on Language Options. Check the “Enable support for GCC extensions (-gcc)” checkbox.
This enables the program to access uninitialized structuresin st r uct ur e. c, allowing
element three (for example) to be accessed without having to access elements one and
two. For more information, see;
http://processors.wiki.ti.com/index.php/GCC_Extensions in_TI_Compilers

7. Under Build / MSP430 Compiler, click on Include Options. Y ou must add two pathsin
the search path, one for where the structure files are located and one for wherethe CTS
library file are located.

Click on the Add button ‘£ in the bottom window and click on the Workspace... button.
Select the Lab10c folder and click OK. Thisiswhere the structure files are located.
Click OK again.

Click on the Add button E again in the bottom window and click on the Workspace...
button. Select the Li br ary folder under Lab10c and click OK. Thisiswherethe CTS
library files are located. Click OK again.

Y our search path window should look like this:

Add dir to Findude search path (—-ndude_path, -I)

"s{CCS_BASE_ROCT) mep430/incude”
"sfworkspace loc: '="F'||:|Hame>>

E[CG TOOL ROOT ||'u:|ude

Click OK to save your changes to the project properties.

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10-29


http://processors.wiki.ti.com/index.php/GCC_Extensions_in_TI_Compilers�

Lab 10: Capacitive Touch

Lab10c.c

9.

We're going to write afairly minimal program that will light the LED when the middle
button on the Capacitive Touch board is touched. In order to conserve power, we' Il have
the M SP430 wake from sleep using atimer every 500ms to check the button. We'll also
want to characterize the e ement, so there will be a small amount of code for that too.

Thisimplementation is arelaxation oscillator using the PinOsc feature. It uses Timer_AO
and the WDT+ for gate times.

Open the empty mai n. c for editing. Remember that you can cut/paste from the pdf file.
Let’s start out by adding some includes and defines. Delete the current codein mai n. ¢
and add the next three lines:

#i ncl ude "CTS_ Layer. h" /I include Capacitive Touch libraries
#defi ne CHAR_MODE // used in ifdefs to run characterization code
#defi ne DELAY 5000 [ timer delay — 500ms

Add alinefor spacing, and then add the following ifdef/declaration. This declaration will
only be compiled if the CHAR_MODE definition is present, which it is now.

#i fdef CHAR MODE

unsi gned int dCnt; /I characterization count held here
#endi f

10. Add alinefor spacing, and then we'll get started on themai n() routine. We need to set

up the watchdog timer, DCO, etc. Add this code after the spacing line:

voi d mai n(voi d)

{
WDTCTL = WDTPW + WDTHOLD;  // Stop watchdog timer
BCSCTL1 = CALBCl_ 1MHzZ; // IMHz DCO calibration
DCOCTL = CALDCO 1Mz,
BCSCTL2 | = DI VS _2; // divide SMCLK by 4 for 250khz
BCSCTL3 | = LFXT1S 2; IILEXT1=VLO

10-30

Getting Started with the MSP430 LaunchPad - Capacitive Touch




Lab 10: Capacitive Touch

11. Next, we need to set up the GPIO. A quick look at the schematic of the BoosterPack (in

SLAU337) would be helpful:
1 | 2 3 i
i |
A P ' Pia A
PRl P ) S
o R
p2.2 _;'I_ =y i’ G g P
P s wo HO o ()
P2.4 :l_,, - - - - = = =t F
P — 4 g B 8| 8
. BYBIBRTEN [ [F [
CND
P - L - - -
Ji - i J2
ii brs e XIN RE
C e '“:'.31 VTDIC L{ c
e £ e
EN P2.0 2.5 13
1 1 21 £ ke u
FETOLSMD FE1OHSMD
D Revl.2
430B00ST_SEMSEL
430BOOST_SENSE1 - =
3711/2811 12:27:13 BN
Sheet: 1/1 |
1 | 2 | 3 [ 4

Add alinefor spacing, and then add the following GPIO setup code:

P1OUT = 0x00; // Clear Port 1 bits

P1IDIR | = BI TO; /I Set P1.0 as output pin

P2SEL &= ~(BIT6 + BIT7); [/ Configure XIN & XOUT to GPIO
P20QUT = 0x00; /I Drive dl Port 2 pins low

P2Dl R = OxFF,; /I Configure all Port 2 pins outputs

12. Before we jump into the button detection whi | e() loop, we nheed to make a basdline
measurement for the Capacitive Touch button. The first API call makes the initia
measurement and the second makes five more measurements to ensure accuracy. Add a
line for spacing, and then add the next two lines of code below the last ones:

Tl _CAPT_I nit_Basel i ne( &ne_button);
Tl _CAPT_Updat e_Basel i ne( &one_but ton, 5) ;

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10-31



Lab 10: Capacitive Touch

13.

14.

15.

Let’s start out the button detection whi | e() loop withthei f def code to characterize
the middle button. Y ou’ ve see this API in the last two labs. Remember that this code will
only compileif the CHAR_MODE definition isin place. Add aline for spacing and add
this codeto mai n. c:

while (1)
{
#i fdef CHAR_MODE
Tl _CAPT_Cust om{ &one_but t on, &JCnt ) ;
__no_operation(); /I Set breakpoint here
#endi f

If the CHAR_MODE definition isnot in place, we want to run the button detection code.
This code will look at the value from the middle button and compare it against the
threshold setin st r uct ur e. c to determineif the button has been touched. If atouchis
detected, the red LED will be lit (checked the schematic above). Also note that the red
LED on the LaunchPad is connected to the same port pin, so it will light also. Add aline
for spacing, and then add this code after the others:

#i f ndef CHAR_MODE
i f(TI _CAPT _Button(&one_button))

{

P1OUT | = BI TO; /I Turn on center LED
}
el se
{

P1OUT &= ~BI TO; // Turn off center LED
}

Finaly inthewhi | e() loop, once the button action is complete, we need to go to sleep
to conserve power. Add aline for spacing, then add the following code:

sl eep( DELAY) ; /I LPM 3 for 500ms delay time
#endi f
} /I close while loop
} /I close main

16.

We need afunction for the sl eep() call above. Thisfunction will configure Timer_A
to run off the ACLK, count in UP mode, place the CPU in LPM 3 mode and enables the
interrupt vector to jump to when the timeout occurs. Don't take our word for it, crack
open that Users Guide. Add this code right above your mai n() code:

voi d sl eep(unsigned int tine)
{
TAOCCRO = ti ne;
TAOCTL = TASSEL_1+MC 1+TACLR;
TAOCCTLO &= ~CCl FG
TAOCCTLO | = COE;
__bis_SR regi ster(LPMB_bits+d E);

10 - 32

Getting Started with the MSP430 LaunchPad - Capacitive Touch




Lab 10: Capacitive Touch

17. Lastly we need the ISR for the timer interrupt. The purpose of the timer interrupt is
simply to wake the CPU from LPM 3 so the Capacitive Touch codein thewhi | e() loop
can run. Open that Users Guide again and verify the functionality. Add aline for spacing,
and then add this function to the bottom of your code:

//*************************************************

/1 TimerO_A0 ISR Disables the tinmer and exits LPM
//*************************************************
#pragma vect or =TI MERO_AO_VECTOR

__interrupt void ISR _Ti mer0_AO(voi d)

TAOCTL &= ~(MC_ 1);
TAOCCTLO &= ~(CC E);
__bic_SR register_on_exit(LPM3_bits+d E);

}

18. Save your changes.

Right-click on mai n. c inthe Project Explorer pane and click Build Selected File(s). If
you have any problems, check the code on the next page to correct your iSsues.

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10 - 33



Lab 10: Capacitive Touch

#i ncl ude "CTS_Layer. h" /'l include Capacitive Touch libraries

#defi ne CHAR_MODE /1 used in ifdefs to run characterization code
#defi ne DELAY 5000 /1 timer delay — 500ns

#ifdef CHAR MODE

unsi gned int dCnt; /'l characterization count held here

#endi f

voi d sl eep(unsigned int tine)

TAOCCRO = tine;

TAOCTL = TASSEL_1+MC_1+TACLR;
TAOCCTLO &= ~CCl FG

TAOCCTLO | = CC E;

__bis_SR register(LPM3_bits+G E);

}
voi d mai n(voi d)
{
WDTCTL = WDTPW + WDTHOLD; /1 Stop watchdog tiner
BCSCTL1 = CALBC1_1MHZ; /1 1MHz DCO calibration
DCOCTL = CALDCO 1M1z,
BCSCTL2 | = DI VS_2; /1 divide SMCLK by 4 for 250khz
BCSCTL3 | = LFXT1S 2; /] LFXT1 = VLO
P1OUT = 0x00; /'l Clear Port 1 bits
P1DI R | = BI TO; /1 Set P1.0 as output pin
P2SEL &= ~(BIT6 + BIT7); /1 Configure XIN & XOUT to GPIO
P20OUT = 0xO00; /1 Drive all Port 2 pins |ow
P2DI R = OxFF; /1 Configure all Port 2 pins outputs

TI _CAPT_I ni t _Basel i ne( &ne_button);
TI _CAPT_Updat e_Basel i ne( &ne_button, 5);

while (1)
{
#i fdef CHAR_MODE
TI _CAPT_Cust om( &one_but t on, &Cnt ) ;
__no_operation(); /1 Set breakpoint here
#endi f

#i f ndef CHAR_MODE
i f (Tl _CAPT_Button(&one_button))

P1OUT | = BI TO; /1 Turn on center LED
}
el se
P1OUT &= ~BI TO; /!l Turn off center LED
}
sl eep( DELAY) ; /1 LPMB for 500ns delay tine
#endi f
} /1 close while |oop
} /1 close main

[ ] R KKk ko kK ok ok ok ok sk kK K ok ok ok sk kK K ok ok ok kK K ok ok ok kR R ok ok ok kK ok ok ok ok kK

/1 TimerO_AO ISR Disables the tinmer and exits LPM3
//*************************************************
#pragma vect or =TI MERO_AO_VECTCOR

__interrupt void I SR Tiner0_A0(voi d)

TAOCTL &= ~(MC 1);
TAOCCTLO &= ~(CCIE);
__bic_SR register_on_exit(LPM3_bits+G E);

}

10- 34 Getting Started with the MSP430 LaunchPad - Capacitive Touch



Lab 10: Capacitive Touch

Structure.c

19. Openstruct ure. ¢ for editing. We will only be using the middle button in this
program, so we don’'t need the extra code defining the others. This code only has the
element structure for the middle element and the sensor structure for the middle button.

20. Right above the threshold el ement, change:

. maxResponse = 450+655,
to
. maxResponse = 0+655,

This defines the maximum expected response from the element. When using an
abstracted function to measure the element, 100* (maxResponse — threshold) <OxFFFF.
So maxResponse — threshold < 655. Also note that the threshold is currently O since we
will be characterizing the response in afew steps.

Also, change the threshold from 450 to 0. Save your changes.

21. Check your code against ours below, comments were removed to fit the page.

#include "structure.h”
/I Middle Element (P2.5)
const struct Element middle_element =
{
.inputPxselRegister = (uint8_t *)& P2SEL,
InputPxsel2Register = (uint8_t *)& P2SEL 2,
InputBits = BIT5,
.maxResponse = 0+655,
threshold =0

};

/I One Button Sensor
const struct Sensor one_button =
{
.halDefinition = RO_PINOSC_TAO _WDTp,
.numElements =1,
.baseOffset = 0,
arrayPtr[0] = &middle_element,
.measGateSource= GATE WDT_ACLK,
.accumulationCycles= WDTp_GATE_64

};

Getting Started with the MSP430 LaunchPad - Capacitive Touch 10-35




Lab 10:

Capacitive Touch

Structure.h

22. Openstruct ur e. h for editing. In the Public Globals area, remove al the declarations
except for the middle element and the one_button sensor.

23. In the Ram Allocation area, make sure that the definition for
TOTAL_NUMBER_OF ELEMENTSIisuncommented andis“1”.

24. Also in the Ram Allocation area, make sure that the definition for RAM_FOR_FLASH is
uncommented. Save your changes. The top portion of your code should look like our
code below:

#i fndef CTS_STRUCTURE
#def i ne CTS_STRUCTURE

#i ncl ude "nsp430. h"
/| #i ncl ude "nsp430g2452. h"
#i ncl ude <stdint. h>

/* Public dobals */
extern const struct El enment m ddle;

extern const struct Sensor one_button;

[ ] Fxxxxk RAM ALLOCATI] O % % % % o sk sk ko o sk sk sk ok o ok o ok sk ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

/1 TOTAL_NUMBER OF_ELEMENTS represents the total nunber of elements used, even if
/'l they are going to be segnented into seperate groups. This defines the

/1 RAM al | ocation for the baseline tracking. If only the TI_CAPT_Raw function
/1 is used, then this definition should be renpved to conserve RAM space.

#def i ne TOTAL_NUMBER_OF_ ELEMENTS 1

/1 1f the RAM FOR_FLASH definition is renoved, then the appropriate HEAP size

/'l must be allocated. 2 bytes * MAXI MUM_NUMBER OF ELEMENTS PER SENSOR + 2 bytes
/1 of overhead.

#def i ne RAM_FOR_FLASH

//****** Structure Array mflnltlon khkkkkhkkkhkkhkhkkhkhkkhkhkkhhkhhkhkhhkkhhkdhkhkhkhkhhkdhkdhhhkhhhkdkdxkx*k
/1 This defines the array size in the sensor strucure. |In the event that

/1 RAM FOR FLASH is defined, then this also defines the amount of RAM space

/1 allocated (global variable) for conputations.

#def i ne MAXI MUM_NUMBER_OF _ELEMENTS_PER SENSOR 1

//****** C:hoos'ng a NEaSUreI’TEnt thhod khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkhhkhkhkhkkhkhkkhhkhhkhkhhkhkhdhkhhkhkkxkxx
/| These variables are references to the definitions found in structure.c and

/'l must be generated per the application.

10 - 36

Getting Started with the MSP430 LaunchPad - Capacitive Touch




Lab 10: Capacitive Touch

Build, Load, Run and Test
25. Click the debug button to build and load the program to the M SP430. Correct any errors

that you find.

26. In the Expression pane, delete all the expressions by clicking the Remove Al
Expressions button & . Then add the dCnt global variable as an expression.

27. Close any graphs that you may have from earlier labs.

28. Findthe __no_operation(); lineof codearound line 39 and place a breakpoint
there. Right-click on the breakpoint symbol (left of the line of code) and select
Breakpoint Properties ... Click on the value “ Remain Halted” for the property “Action”.
Change the action to “Refresh all Windows” and click OK.

29. Run the code and watch the dCnt variable in the watch window. If adding a graph will
help you visualize things, use the following properties:

f

Property
=] Data Properties
Acquisition Buffer Size
Dsp Data Type
Index Increment
Q_Value
Sampling Rate HZ
Start Address
= Display Properties
Axis Display
Data Plot Style
Display Data Size
Grid Style
Maanitude Display Scale
Time Display Unit
Use Dc Value For Graph

Yalue

1

16 bit signed integer
1

1]

1

&dCnt

W] true
Line

10

Major Grid
Linear
sample

_| false

30. Fill inthetablefor dCnt below. Our results are shown for comparison.

Observed Noise Middle Button Touch

Your Results

Our Results

0-140

850-1000

Getting Started with the MSP430 LaunchPad - Capacitive Touch

10 - 37




Lab 10: Capacitive Touch

Threshold

31.

32.

33.

35.

36.

37.

38.

Now we can finalize the code and set the threshold. We want to pick athreshold that is
high enough above the noise so that it doesn’t trigger erroneoudly, but low enough not to
miss any actua touches. Based on our results above, we' re going to pick 500. Y our
number may be different.

Suspend the program. Remove the graph if you added one, remove the dCnt watch
expression and disable the breakpoint you set. Click the Terminate button to return to the
“CCS Edit” perspective.

Open mai n. ¢ and comment out the #def i ne CHAR _MODE definition. Thiswill alow
our normal button code to compile and run. Save your changes.

. Open st ruct ur e. ¢ and make the following changes. Remember to use your own

choice where we choose 500 if it isdifferent.

. maxResponse = 500+655,
.threshold = 500

Save your changes.

Build, load and run the code. Touch the middle button. If everything isworking properly,
the middle LED on the BoosterPack board and the red LED on the LaunchPad should
light. Sweet!

Feel free to experiment with the sleep time, gate time, threshold, etc. Checking the power
isalittle problematic unless you have an oscill oscope since the code spends the mgjority
of itstimein LPM3.

Terminate the active debug session using the Ter i nat e ® putton. Thiswill close
the debugger and return to the “ CCS Edit” view. Minimize Lab10c in the Pr oj ect
Expl or er pane.

Close Code Composer Studio.

ST

You're done.

10 - 38

Getting Started with the MSP430 LaunchPad - Capacitive Touch




	MSP430mod00
	Important Notice
	Revision History
	Mailing Address


	MSP430mod01
	Introduction to Value Line
	Module Topics
	Introduction to Value Line
	TI Processor Portfolio
	MSP430 Released Devices
	MSP430G2xx Value Line Parts
	MSP430 CPU
	Memory Map
	Value Line Peripherals
	LaunchPad Development Board

	Lab 1: Download Software and Setup Hardware
	Objective
	Procedure
	Download and Install Code Composer Studio 5.1
	Download and Install Workshop Lab and Solution Files
	Download Supporting Documents and Software
	Third Party Websites
	MSP-EXP430G2 LaunchPad Experimenter Board
	Hardware Setup
	Running the Application Demo Program




	MSP430mod02
	Code Composer Studio
	Module Topics
	Code Composer Studio
	Lab 2: Code Composer Studio
	Objective
	Procedure
	Start Code Composer Studio and Open a Workspace
	Create a New Project
	Source Files
	Build and Load the Project
	Debug Environment
	Terminate Debug Session and Close Project


	Optional Lab Exercise – Crystal Oscillator
	Objective
	Procedure
	Solder Crystal Oscillator to LaunchPad
	Verify Crystal is Operational
	Terminate Debug Session and Close Project




	MSP430mod03
	Initialization and GPIO
	Module Topics
	Initialization and GPIO
	Reset and Software Initialization
	Clock System
	G2xxx - No Crystal Required - DCO
	Run Time Calibration of the VLO
	System MCLK & Vcc
	Watchdog Timer

	Lab 3: Initialization and GPIO
	Objective
	Procedure
	Create a New Project
	Source File
	Running the CPU on the VLO
	Running the CPU on the Crystal
	Running the CPU on the DCO and the Crystal
	Optimized Code Running the CPU on the DCO and the Crystal
	Running the CPU on the DCO without a Crystal
	Optimized Code Running the CPU on the DCO and VLO




	MSP430mod04
	Analog-to-Digital Converter
	Module Topics
	Analog-to-Digital Converter
	Fast Flexible ADC10
	Sample Timing
	Autoscan + DTC Performance Boost

	Lab 4: Analog-to-Digital Converter
	Objective
	Procedure
	Create a New Project
	Source File
	Set Up ADC Code
	Build, Load, and Run the Code
	Test the ADC Conversion Process
	Terminate Debug Session and Close Project




	MSP430mod05
	Interrupts and the Timer
	Module Topics
	Interrupts and the Timer
	Timer_A2/A3 Features
	Interrupts and the Stack
	Vector Table
	ISR Coding

	Lab 5: Timer and Interrupts
	Objective
	Procedure
	Create a New Project
	Source File
	Using the Timer  to Implement the Delay
	Create an Interrupt Sevice Routine (ISR)
	Modify Code in Functions and ISR
	Build, Load, and Run the Code
	Test the Code
	Terminate Debug Session and Close Project




	MSP430mod06
	Low-Power Optimization
	Module Topics
	Low-Power Optimization
	Low-Power Modes
	Low-Power Operation
	System MCLK & Vcc
	Pin Muxing
	Unused Pin Termination

	Lab 6: Low-Power Modes
	Objective
	Procedure
	Create a New Project
	Source File
	Reconfigure the I/O for Low-Power
	Baseline Low-Power Measurements
	Configure Device Pins for Low-Power
	MSP430G2553 Current Consumption
	Replace the while(1) loop with a Low-Power Mode
	Fully Optimized Code for Low-Power
	Summary




	MSP430mod07
	Serial Communications
	Module Topics
	Serial Communications
	USCI
	Protocols
	Software UART Implementation
	USB COM Port Communication
	Objective
	Procedure
	Create a New Project
	Source File
	Remove Timer_A2 and Add WDT+ as the Interval Timer
	Add the UART Code
	Test the Code
	Terminate Debug Session and Close Project




	MSP430mod08
	Grace
	Module Topics
	Grace
	Lab 8: Grace
	Objective
	Procedure
	Create a Grace Project
	Welcome to Grace™
	DVCC
	BCS+
	WDT+
	GPIO
	Timer_A2
	System Registers - GIE
	Application Code
	Build, Load, Run




	MSP430mod09
	FRAM Overview
	Module Topics
	FRAM – Next Generation Memory
	FRAM Controller
	FRAM and the Cache
	MPU
	Write Speed
	Low Power
	Increased Flexibility and Endurance
	Reflow and Reliability



	MSP430mod10
	Capacitive Touch
	Module Topics
	Capacitive Touch
	Capacitive Measurement
	RO Implementations
	Details
	Change in Capacitance
	Change in Counts
	Robustness
	Noise Immunity
	PinOsc CPU Overhead
	RC Implementation
	Change in Counts
	Duty Cycle vs. Current
	Library Overview
	Element Definition
	Sensor Definition
	Summary
	Booster Pack Layout

	Lab 10: Capacitive Touch
	Objective
	Procedure
	Install Hardware and Software

	Lab10a – Observe Element Reponse
	Import Project
	Inspect Structure Files
	Open LAB10a.c
	Build, Load
	Setup Watch Window and Breakpoint Action
	Run
	Graphs

	Lab10b – Characterize the Elements
	Import Project
	Build, Load
	Setup Watch Window and Breakpoint Action
	Graphs
	Changing the Measurement Window Time
	Build, Load, Run and Graph

	Lab10c – Capacitive Touch Project from a Blank Page
	Copy/Create Files
	Create Project
	Build Properties
	Lab10c.c
	Structure.c
	Structure.h
	Build, Load, Run and Test
	Threshold





