
1 Introduction

Application Report
SLAA294A–March 2006–Revised August 2006

MSP430 Software Coding Techniques
Keith Quiring... MSP430 Applications

ABSTRACT

This application report covers software techniques and topics of interest to all MSP430
programmers. The first part of the document discusses the MSP430 standard
interrupt-based code flow model, recommended for the vast majority of applications.
The next part discusses a handful of techniques that should be considered by any
developer that sets out to develop an MSP430 application. Using these methods can
greatly reduce debug time and/or provide additional robustness in the field. They
include initialization procedures, validation of supply rails before performing
voltage-sensitive operations, and use of special functions. Code examples are
provided.

Contents
1 Introduction .. 1
2 MSP430 Top-Level Code Flow ... 2
3 Techniques .. 3
4 References .. 6

List of Figures

1 MSP430 Top-Level Code Flow ... 2

This application report covers software techniques that are widely applicable in MSP430 applications.
Some should be used in every program, while some are situation dependent. All are designed to save
time for the developer and/or increase system robustness.

The first part of the document discusses the MSP430 standard code flow model, recommended for the
vast majority of applications. The next part discusses a selection of techniques that should be considered
by any developer that sets out to develop an MSP430 application.

As with all MSP430 application reports, this document is designed to support the user's guides, so please
refer to the relevant user's guide while reading this report.

SLAA294A–March 2006–Revised August 2006 MSP430 Software Coding Techniques 1
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA294A

www.ti.com

2 MSP430 Top-Level Code Flow

Begin

Initialize I/O
ports, peripheral

modules, and

variables

Enter sleep

mode (LPMn)

flag_1 set?

flag_2 set?

flag_n set?

Execute

flag_1

handler

Execute

flag_2
handler

Execute

flag_n

handler

Interrupt Service

Routine #1

(periodic wakeup)

Set flag_1

Modify SR contents

on the stack, to

keep CPU awake

after return

Return from

interrupt

Interrupt Service

Routine #2

(peripheral-generated)

Set flag_2

Modify SR contents

on the stack, to

keep CPU awake

after return

Return from

interrupt

Clear

flag_1

Clear

flag_2

Clear

flag_n

main() ISRs

N

N

N

Y

Y

Y

MSP430 Top-Level Code Flow

Most MSP430 software applications are best served by adhering to a flow similar to the one portrayed in
Figure 1. This flow is designed to maximize power efficiency.

Figure 1. MSP430 Top-Level Code Flow

The code architecture is interrupt driven, because doing so provides the most opportunities to power down
the device. The device sleeps until an interrupt is received, thereby maximizing power efficiency.

To understand the way the interrupt service routines (ISRs) in Figure 1 are implemented, it is beneficial to
review the way in which the MSP430 handles low-power modes. The power modes are controlled by bits
within the status register (SR). The advantage of this is that the power mode in place prior to ISR
execution is saved onto the stack. When the ISR reloads that value upon completing execution, program
flow returns to that saved power mode. However, by manipulating the saved SR value on the stack from
within the ISR, program flow after the ISR can be diverted to a different power mode.

This mechanism is an integral part of the MSP430 low-power operation, because it allows the device to
quickly wake up in response to an interrupt. As an example, suppose a device is in the LPM0 low-power
mode when an interrupt occurs. The MSP430 prepares for ISR execution, including the saving of the SR
to the stack and clearing the SR. Clearing the SR causes an exit from LPM0 into active mode. Within the
ISR, the code developer places a statement that modifies the saved SR value by clearing the low-power
bits. When the ISR completes, it reloads the values from the stack to their respective registers. Without
having modified the bits, this action would put the device back into LPM0. Because the SR value has been
modified to reflect a fully active device, the device stays active, and execution resumes at the PC value
that had been saved to the stack prior to ISR execution.

2 MSP430 Software Coding Techniques SLAA294A–March 2006–Revised August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA294A

www.ti.com

3 Techniques

3.1 First Things First: Configure the Watchdog and Oscillator

3.2 Always Use Standard Definitions From TI Header Files

Techniques

Given this ability to change the power mode from the ISR, the developer can choose to implement the full
functionality of the ISR within the routine itself, or use the ISR to wake up the processor and let the main
loop handle all or part of the resulting functionality. Handling within the ISR ensures that the response to
the interrupt event is immediate, provided that interrupts are enabled at the time of the event. However,
while handling an ISR, interrupts are not enabled and will not be enabled until the ISR is completed. As a
result, long ISRs may decrease system responsiveness. The developer must choose which of these
options best fits the application.

Applying this understanding to the flow in Figure 1, the figure shows two interrupts that allow their
functionality to be handled within the main loop. These ISRs execute two tasks. First, they change the
saved SR value on the stack to reflect a device in active mode. This allows one run through the main loop,
before returning to sleep again. The interrupt can be any applicable event, such as a timer, pushbutton, or
completion of an analog-to-digital conversion. The second task of the ISR is to set a flag that
communicates to the main loop what action needs to be taken.

If the action to be taken in response to an interrupt is brief enough to be placed within the ISR itself, there
may be no need to handle it in the main loop. In this case, there is no need for the ISR to set a flag or
alter the SR power mode bits. The CPU would return to sleep upon exiting the ISR.

This flow can be adapted according to the complexity of the application. For example, if only one interrupt
has the ability to wake the main loop, a flag system is unnecessary. In this case, the interrupt wakes the
main loop, and the main loop performs its one function and puts the CPU back to sleep. An application
that requires the CPU never sleep may have no need for interrupts at all.

The generalized sleep mode "LPMn" is shown in Figure 1. The actual mode to be used depends on the
modules that must stay awake during the sleep mode. If a timer is responsible for waking up the device,
and the timer is driven by ACLK, then ACLK must be kept active; LPM3 can be used. However, if the
timer is driven from the DCO, then LPM0 must be used.

All the techniques in this application report assume that some version of this code structure is in place.
Nearly every piece of code provided by TI, whether in the code examples or application reports, reflects
this architecture and can be referenced for further study.

It is beneficial to gain a solid understanding of this interrupt-driven code flow as it pertains to a particular
program. Consider where program execution might be when a given interrupt occurs, and what effect the
interrupt will have on the code that was originally being executed.

Configuring the watchdog should be among the first actions taken by any MSP430 program. If it is not
handled quickly, the watchdog expires, and a PUC system reset occurs. This then occurs iteratively to
form an endless loop. To prevent this, the watchdog should be configured at the beginning of the program,
either by resetting the timer value, setting the hold bit, or disabling watchdog mode

Similarly, when using a low-frequency crystal on LFXT1 with a device from the 4xx or 2xx families, the
code should configure the internal load capacitance using the FLL_CTL0 register, very early in the code.
Without this, the oscillator may not run properly. Note that it could still be a relatively long time after this
before the clock is stable see Section 3.4.

These techniques can be found in most MSP430 code examples available from TI.

TI provides header files for every MSP430 device in production. These header files have constants for all
the registers and bits in a given device, which match the names provided in the user's guides. Using these
constants within code greatly enhances its readability. It also gives any code that uses them a similar
look-and-feel that enables another engineer familiar with MSP430, including TI's support team, to more
quickly grasp the code. Every code example and application report from TI uses these headers where
applicable.

SLAA294A–March 2006–Revised August 2006 MSP430 Software Coding Techniques 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA294A

www.ti.com

3.3 Using Intrinsic Functions to Handle Low Power Modes and Other Functions

3.4 Write Handlers for Oscillator Faults

Techniques

Several intrinsic functions are made available in MSP430 development environments when writing in C.
Sometimes, the only way to accomplish a critical task is to use an intrinsic function. Other intrinsics
provide an opportunity to do things more efficiently.

The most common example of a critical task that can only be done using intrinsic functions is
entering/exiting low power modes. Doing so requires manipulation of bit values not otherwise accessible at
the level of C, since they reside within the CPU's status register. If entering LPM3 within the IAR
development environment, an intrinsic function is used:

_BIS_SR(LPM3_bits + GIE);

Other intrinsic functions provide opportunity for optimization, such as those that provide access to the
MSP430 BCD math assembly instructions. Doing BCD math without these instructions requires a
considerable amount of C code, and the compiler will not automatically translate this code to the MSP430
BCD math instructions. Using the intrinsic functions allows the C programmer to take advantage of these
instructions, maximizing memory and power efficiency.

The documentation for the development environment includes a list of these functions. Please refer to this
list during development, and check it whenever new versions of the environment are released.

The MSP430 has circuitry that checks the integrity of the clocks. All the families provide this function for
the DCO and high-frequency crystal sources. The 4xx and 2xx families also provide this function for a low-
frequency (32.768 kHz) source. The specifics are covered in the user's guides.

Two kinds of oscillator faults should be considered, and a decision made regarding whether or not to
handle them:

1. Stabilization of a crystal oscillator as it powers up. This happens every time the device runs. The time
to stabilization is particularly long for low-frequency crystals, often in the hundreds of milliseconds.

2. Failure during operation. This can occur if a conductive substance is allowed to short the leads of the
crystal. Some applications may be particularly susceptible to failure and/or intolerant of it and,
therefore, need to handle it in a particular way. If a crystal oscillator fails, the DCO is available to drive
the CPU while it handles the failure.

If an oscillator sourcing ACLK or SMCLK fails or has not yet stabilized, any peripherals supplied by those
clocks are affected, and the only way to prevent this is to catch and handle it in software. A common
problem is for a timing-sensitive peripheral (i.e., a timer), sourced by a low-frequency crystal, to produce
poor initial results because the crystal has not yet stabilized. If the code does not wait for the crystal to
stabilize, the output of the peripheral may be corrupted.

If LFXT1 or XT2 sourcing MCLK fails, supply of MCLK reverts to the DCO. While this is an intelligent and
robust fail-safe, it may have a negative effect on operation of the circuit and, therefore, needs to be caught
and handled by software, rather than continuing as if nothing happened.

An easy way to handle initial stabilization is to repeatedly clear, wait, and check the fault flags until they
stay cleared, as shown in the user's guides. (For the 1xx family, which cannot detect low-frequency
oscillator faults on LFXT1, a fixed delay can be used, with a period sufficient for the worst-case
stabilization length.) This method does not catch a fault during normal operation. A method that can catch
both scenarios is to set the OFIE bit and implement a handler in the NMI interrupt service routine.

Fault-init.c in the accompanying zip file shows a check performed at startup to ensure the clock has
stabilized. An example of using the OFIE bit and NMI service routine to trap and handle oscillator failures
during operation can be found in code example FET410_LFxtal_nmi.c, in the file SLAC071.zip, available
from the TI website.

MSP430 Software Coding Techniques4 SLAA294A–March 2006–Revised August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA294A

www.ti.com

3.5 Increasing the MCLK Frequency

3.6 Using a Low-Level Initialization Function

Techniques

MCLK can be configured up to 8 MHz (16 MHz on the 2xx family devices). However, the VCC requirement
increases with frequency. If MCLK is set for a frequency that requires a VCC level higher than what is
applied to the device, unpredictable behavior can occur. The data sheet for a given device indicates the
VCC required for a particular MCLK frequency.

Even if the stabilized VCC value is high enough for a given frequency, a slow VCC ramp could prevent that
level from being reached before the program increases the MCLK frequency. This is one reason it is good
for the programmer to have knowledge of the power-up characteristics of the supply rail, not just on a
single prototype, but characterized thoroughly for the device being produced.

If the device in question possesses an SVS module, it can be used to alert the system when VCC has
reached the necessary level. If the device does not contain SVS, but does contain an available
analog-to-digital conversion (ADC) module, the ADC module can be used to sample the VCC level and
determine if its high enough before proceeding with the change.

If the device has neither SVS nor an available ADC, a fixed delay period can be used to wait until VCC has
reached the necessary level. Note that the delay period must be sufficiently long to handle the worst-case
ramp scenario, taking into account variability over production windows, temperature, etc.

A code example showing the use of the SVS module for this purpose is given as mclk.c in the
accompanying zip file.

By default, when a C compiler generates assembly code, it creates code that initializes all declared
memory and inserts it before the first instruction of the main() function. In the event that the amount of
declared memory is large (either a large number of variables, or one or more large memory spaces) this
could pose a problem with the watchdog. The time required to initialize the long list of variables may be so
long that the watchdog expires before the first line of main() can be executed. This means the watchdog
configuration code will never be executed, and an endless loop will result. Generally this can happen only
on devices containing more than 2K of RAM.

The easiest way to prevent this is to use a compiler directive that disables the initialization of memory
elements that don't need pre-initialization. For example, if using IAR, and a single large array is
contributing to a watchdog-expiration problem, it could be handled as such:

__no_init int x_array[2500];

If this directive is not available in a given development environment, another possibility is to use a
compiler-defined low-level initialization function to handle the watchdog before memory is initialized. The
memory would be initialized as usual, but the watchdog configuration would happen first. In the IAR
environment, this is accomplished by adding a function by the name of __low_level_init() and inserting the
watchdog configuration code. For example:

void __low_level_init(void)
{
WDTCTL = WDTPW+WDTHOLD;
}

A code example portraying the low-level init function is given as init.c in the accompanying zip file.

If neither of these functions is available in the compiler environment being used, one more option is to edit
the startup file the compiler inserts at the beginning of every C program. See the compiler documentation
for more information on these options.

If large amounts of memory are being defined on a device from the 4xx family, it is also a good idea to
configure the LFXT1 oscillator capacitance within the low-level init function (or the startup file) (see
Section 3.1). This gives extra time for the oscillator to stabilize before main execution begins.

SLAA294A–March 2006–Revised August 2006 MSP430 Software Coding Techniques 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA294A

www.ti.com

3.7 In-System Programming (ISP)

3.8 Using Checksums to Verify Flash Integrity

4 References

References

If using the MSP430 ISP functionality to write to flash memory, there are a few actions that must be taken
to ensure proper results:

1. Set the correct fFTG value, as specified in the data sheet. Without this, the results are unpredictable. If
the clock is too slow, there is the potential for overstressed flash cells. If the clock is too fast, there is
the potential for incomplete write/erase operations.

2. Set the flash lock bit after the ISP operation is complete. This prevents accidental writes.
3. Take care that the cumulative programming time for a flash block is not exceeded.
4. Provide sufficient VCC. The level required for flash write/erase is higher than what is required for CPU

operation.

The user's guides and data sheets contain more information on these points.

VCC must be above the minimum specified by the device data sheet for flash erase/programming.
Common ways in which this could be violated include a power-up ramp that has not yet completed, or a
battery that has drifted too low for flash programming but is still high enough for CPU operation. Even if
the level is high enough initially, the current draw associated with flash erase/programming could
potentially stress smaller power supplies, pulling the voltage below the minimum threshold.

VCC can be checked using the SVS module, if available, or with analog-to-digital conversion (ADC). SVS
makes it advantageous in that it provides continuous checking of the rail during the operation. The code
example given in Section 3.5 (mclk.c) can be used as a reference for how to configure the SVS prior to
performing a VCC-sensitive operation. The code example sets available from the TI website show how to
use the ADC modules.

To ensure integrity of the data in flash memory during critical applications, a checksum function can be
implemented that periodically verifies the data. The checksum value can be stored in one or more
locations, depending on the redundancy needed. The value provided by a checksum scheme is that it
provides the device an opportunity to handle an error if one should occur.

A code example showing the use of flash checksum verify is given as checksum.c in the accompanying
zip file.

1. MSP430x1xx Family User's Guide (literature number SLAU049)
2. MSP430x2xx Family User's Guide (literature number SLAU144)
3. MSP430x4xx Family User's Guide (literature number SLAU056)
4. MSP430 Code Examples (see http://www.ti.com/msp430)

6 MSP430 Software Coding Techniques SLAA294A–March 2006–Revised August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA294A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2006, Texas Instruments Incorporated

	1 Introduction
	2 MSP430 Top-Level Code Flow
	3 Techniques
	3.1 First Things First: Configure the Watchdog and Oscillator
	3.2 Always Use Standard Definitions From TI Header Files
	3.3 Using Intrinsic Functions to Handle Low Power Modes and Other Functions
	3.4 Write Handlers for Oscillator Faults
	3.5 Increasing the MCLK Frequency
	3.6 Using a Low-Level Initialization Function
	3.7 In-System Programming (ISP)
	3.8 Using Checksums to Verify Flash Integrity

	4 References

