

C2000™ MCU 1-Day Workshop
Workshop Guide and Lab Manual

F28xMCUodw
Revision 4.0
February 2012

Technical Training
Organization

Workshop Topics

2 C2000 MCU 1-Day Workshop

Important Notice
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute TI’s approval, warranty or
endorsement thereof.

Copyright 2009 – 2012 Texas Instruments Incorporated

Revision History
April 2009 – Revision 1.0

October 2009 – Revision 1.1

June 2010 – Revision 2.0

December 2010 – Revision 2.1

October 2011 – Revision 3.0

February 2012 – Revision 4.0

Mailing Address
Texas Instruments
Training Technical Organization
6500 Chase Oaks Blvd Building 2
M/S 8437
Plano, Texas 75023

 Workshop Topics

C2000 MCU 1-Day Workshop 3

Workshop Topics
Workshop Topics ... 3

Workshop Introduction ... 4

Architecture Overview .. 8

Programming Development Environment ... 12
Code Composer Studio ... 12
Linking Sections in Memory .. 14

Lab 1: Linker Command File .. 17

Peripheral Register Header Files ... 23

Reset, Interrupts and System Initialization ... 30
Reset ... 30
Interrupts .. 32
Peripheral Interrupt Expansion (PIE) ... 34
Oscillator / PLL Clock Module .. 36
Watchdog Timer Module .. 37
GPIO ... 38

Lab 2: System Initialization .. 41

Control Peripherals .. 46
ADC Module .. 46
Pulse Width Modulation ... 48
ePWM ... 49
eCAP .. 61
eQEP ... 63

Lab 3: Control Peripherals ... 65

Flash Programming .. 71
Flash Programming Basics ... 71
Programming Utilities and CCS Flash Programmer ... 72
Code Security Module and Password ... 73

Lab 4: Programming the Flash ... 75

The Next Step… ... 82
Training .. 82
controlSUITE ... 82
Development Tools... 83
C2000 Workshop Download Wiki ... 86
Development Support ... 86

Workshop Introduction

4 C2000 MCU 1-Day Workshop

Workshop Introduction

C2000 Microcontroller 1-Day Workshop

Texas Instruments
Technical Training

Copyright © 2012 Texas Instruments. All rights reserved. C2000 is trademarks of Texas Instruments.

C2000 MCU 1-Day Workshop Outline

Workshop Introduction
 Architecture Overview
 Programming Development Environment

 Lab: Linker command file

 Peripheral Register Header Files
 Reset, Interrupts and System Initialization

 Lab: Watchdog and interrupts

 Control Peripherals
 Lab: Generate and graph a PWM waveform

 Flash Programming
 Lab: Run the code from flash memory

 The Next Step…

 Workshop Introduction

C2000 MCU 1-Day Workshop 5

Required Workshop Materials
http://processors.wiki.ti.com/index.php/

C2000_Piccolo_One-
Day_Workshop_Home_Page

F28069 controlSTICK kit

 Install Code Composer Studio v5.1.1

Run the workshop installer
C2000 Microcontroller 1-Day Workshop-4.0-Setup.exe

Lab Files / Solution Files

Student Guide and Documentation

Workshop Introduction

6 C2000 MCU 1-Day Workshop

C2000™ - Building Upon 3 Brands
Piccolo™ MCUs Delfino™ MCUs Concerto™ MCUs

F28M35x
C2834x

F2833x

F2806x
F2803x

F2802x

Performance:
40-80MHz 28x CPU

Floating Point Unit (optional)
CLA Co-Processor (optional)
VCU Accelerator (optional)

Memory:
16KB-128KB Flash
6KB-100KB SRAM
Key Peripherals:

ADC, PWM, QEP, DMA, SPI,
UART, I2C, CAN, USB

Package:
38 TSSOP, 48 QFP, 56 QFN, 64

QFP, 80 QFP, 100 QFP

Performance:
100-300MHz 28x CPU

Floating Point Unit
Memory:

Up to 512KB Flash
Up to 516KB SRAM
Key Peripherals:

ADC, PWM, QEP, DMA, SPI,
UART, I2C, CAN, EMIF

Package:
176 QFP, 176 BGA, 179 u*BGA,

256 BGA

Performance:
Dual Core

Up to 150MHz 28x CPU
Up to 100MHz ARM Cortex M3 CPU

Floating Point Unit
VCU Accelerator

Memory:
256KB-1MB Flash

Up to 132KB SRAM
Key Peripherals:

ADC, PWM, QEP, DMA, EMIF, SPI,
UART, I2C, CAN, USB, EMAC

Package:
144 QFP

150+ Devices, Software Compatibility

 Workshop Introduction

C2000 MCU 1-Day Workshop 7

C2000 Delfino / Piccolo Comparison
F2833x F2803x F2806x

Clock 150 MHz 60 MHz 80 MHz
Flash / RAM 128Kw / 34Kw 64Kw / 10Kw 128Kw / 50Kw
On-chip Oscillators - 2 2
VREG / POR / BOR -

Watchdog Timer

12-bit ADC SEQ - based SOC - based SOC - based
Analog COMP w/ DAC -

FPU -

6-Channel DMA -

CLA -

VCU - -

ePWM / HR ePWM / / /
eCAP / HR eCAP / - / - /
eQEP

SCI / SPI / I2C

LIN - -
McBSP -

USB - -

External Interface - -

Architecture Overview

8 C2000 MCU 1-Day Workshop

Architecture Overview

TMS320F28069 Memory Map
0x000000
0x000400
0x000800

M1 SARAM (1Kw)
M0 SARAM (1Kw)
Data Program

PIE Vectors
(256 w)

PF 0 (6Kw)
reserved

PF 3 (4Kw)
PF 1 (4Kw)

L0 DPSARAM (2Kw)
L1 DPSARAM (1Kw)
L2 DPSARAM (1Kw)
L3 DPSARAM (4Kw)

0x000D00

0x002000
0x005000
0x006000

0x008000
0x008800
0x008C00

0x00A000

0x000E00

0x009000

reserved

Data Program

FLASH (128Kw)

PASSWORDS (8w)

0x3D7CC0
0x3D7C80

0x3D8000

Boot ROM (32Kw)

0x3F7FF8
0x3F8000

0x3FFFFF

CSM Protected:
L0, L1, L2, L3, L4,

OTP, FLASH,
ADC CAL,

Flash Regs in PF0

0x3FFFC0 BROM Vectors (64w)

ADC / OSC cal. data

DPSARAM L0, L1, L2 & L3
accessible by CPU & CLA

PF 2 (4Kw)
0x007000

0x014000
0x3D7800
0x3D7C00

User OTP (1Kw)
reserved

reserved

L4 SARAM (8Kw)
L5 DPSARAM (8Kw)
L6 DPSARAM (8Kw)
L7 DPSARAM (8Kw)

0x00C000
0x00E000

0x012000
0x010000

L8 DPSARAM (8Kw)
0x014000

DPSARAM L5, L6, L7 & L8
accessible by DMA

 Architecture Overview

C2000 MCU 1-Day Workshop 9

F28x Fast Interrupt Response Manager
 96 dedicated PIE

vectors
 No software decision

making required
 Direct access to RAM

vectors
 Auto flags update
 Concurrent auto

context save

28x CPU Interrupt logic

28x
CPUINTMIFR IER96

Pe
rip

he
ra

l I
nt

er
ru

pt
s

 1
2x

8
=

96

12 interrupts

INT1 to
INT12

PIE
Register

Map

PIE module
For 96

interrupts

T ST0
AH AL
PH PL
AR1 (L) AR0 (L)
DP ST1
DBSTAT IER
PC(msw) PC(lsw)

Auto Context Save

Direct Memory Access (DMA)

McBSP-A

DMA
6-channelsL5 DPSARAM

L6 DPSARAM

L7 DPSARAM

L8 DPSARAM

ADC
Result 0-15

Triggers

ADCINT1 / ADCINT2
MXEVTA / MREVTA
XINT1-3 / TINT0-2

ePWM1-6 (SOCA-B)
USB0EP1-3RX/TX

software

PIE
DINTCH1-6

PWM1
PWM2
PWM3
PWM4
PWM5
PWM6

SysCtrlRegs.EPWMCNF.bit.CONCNF
(maps ePWM to DMA bus or CLA bus)

Transfers data between peripherals and/or
memory without intervention from the CPU

Architecture Overview

10 C2000 MCU 1-Day Workshop

Control Law Accelerator (CLA)

 CLA is an independent 32-bit floating-point
math accelerator

 Executes algorithms independently and in
parallel with the main CPU

 Direct access to ePWM / HRPWM, eCAP, eQEP,
ADC result and comparator registers

 Responds to peripheral interrupts
independently of CPU

 Frees-up CPU for other tasks
(communications and diagnostics)

C28x CPU

CLA
PWM

ADC
&

CMP

Viterbi, Complex Math, CRC Unit (VCU)
Extends C28x instruction set to support:

 Viterbi operations
Decode for communications

 Complex math
 16-bit fixed-point complex FFT (5 cycle butterfly)

 used in spread spectrum communications, and many signal processing
algorithms

Complex filters
 used to improve data reliability, transmission distance, and power

efficiency

 Power Line Communications (PLC) and radar
applications

 Cyclic Redundancy Check (CRC)
Communications and memory robustness checks

 Architecture Overview

C2000 MCU 1-Day Workshop 11

Architecture Summary
 High performance 32-bit CPU
 32x32 bit or dual 16x16 bit MAC
 IEEE single-precision floating point unit (FPU)
 Hardware Control Law Accelerator (CLA)
 Viterbi, complex math, CRC unit (VCU)
 Atomic read-modify-write instructions
 Fast interrupt response manager
 128Kw on-chip flash memory
 Code security module (CSM)
 Control peripherals
 12-bit ADC module
 Comparators
 Direct memory access (DMA)
 Up to 54 shared GPIO pins
 Communications peripherals

Programming Development Environment

12 C2000 MCU 1-Day Workshop

Programming Development Environment

Code Composer Studio

 Programming Development Environment

C2000 MCU 1-Day Workshop 13

Programming Development Environment

14 C2000 MCU 1-Day Workshop

Linking Sections in Memory

Sections

 All code consists of
different parts called
sections

 All default section
names begin with “.”

 The compiler has
default section names
for initialized and
uninitialized sections

int x = 2;

int y = 7;

void main(void)

{

long z;

z = x + y;

}

Global vars (.ebss) Init values (.cinit)

Local vars (.stack) Code (.text)

 Programming Development Environment

C2000 MCU 1-Day Workshop 15

Compiler Section Names

Name Description Link Location
.text code FLASH
.cinit initialization values for FLASH

global and static variables
.econst constants (e.g. const int k = 3;) FLASH
.switch tables for switch statements FLASH
.pinit tables for global constructors (C++) FLASH

Initialized Sections

Name Description Link Location
.ebss global and static variables RAM
.stack stack space low 64Kw RAM
.esysmem memory for far malloc functions RAM

Uninitialized Sections

Note: During development initialized sections could be linked to RAM since
the emulator can be used to load the RAM

Placing Sections in Memory

.ebss

.cinit

.text

Memory
M0SARAM

(0x400)
0x00 0000

0x3E 8000

0x00 0400 M1SARAM
(0x400)

FLASH
(0x10000)

Sections

.stack

Programming Development Environment

16 C2000 MCU 1-Day Workshop

Linking

Linker

Link.cmd

.map

.obj .out

 Memory description
 How to place s/w into h/w

Linker Command File

SECTIONS
{

.text:> FLASH PAGE = 0

.ebss:> M0SARAM PAGE = 1

.cinit:> FLASH PAGE = 0

.stack:> M1SARAM PAGE = 1
}

MEMORY
{
PAGE 0: /* Program Memory */
FLASH: origin = 0x3E8000, length = 0x10000

PAGE 1: /* Data Memory */
M0SARAM: origin = 0x000000, length = 0x400
M1SARAM: origin = 0x000400, length = 0x400

}

 Lab 1: Linker Command File

C2000 MCU 1-Day Workshop 17

Lab 1: Linker Command File
 Objective

Use a linker command file to link the C program file (Lab1.c) into the system described below.

Lab 1: Linker Command File

System Description:
• TMS320F28069
• All internal RAM
blocks allocated

Placement of Sections:
• .text into RAM Block L4SARAM on PAGE 0 (program memory)
• .cinit into RAM Block L4SARAM on PAGE 0 (program memory)
• .ebss into RAM Block M0SARAM on PAGE 1 (data memory)
• .stack into RAM Block M1SARAM on PAGE 1 (data memory)

F28069

Memory

on-chip
memory

0x00 0000 M0SARAM
(0x400)

M1SARAM
(0x400)

L0DPSARAM
(0x800)

L1DPSARAM
(0x400)

L2DPSARAM
(0x400)

L3DPSARAM
(0x1000)

0x00 0400

0x00 8000

0x00 8800

0x00 8C00

0x00 9000

0x00 A000 L4SARAM
(0x2000)

L5DPSARAM
(0x2000)

L6DPSARAM
(0x2000)

L7DPSARAM
(0x2000)

L8DPSARAM
(0x2000)

0x00 C000

0x00 E000

0x01 0000

0x01 2000

System Description
• TMS320F28069
• All internal RAM blocks allocated

Placement of Sections:
• .text into RAM Block L0SARAM on PAGE 0 (program memory)
• .cinit into RAM Block L0SARAM on PAGE 0 (program memory)
• .ebss into RAM Block M0SARAM on PAGE 1 (data memory)
• .stack into RAM Block M1SARAM on PAGE 1 (data memory)

 Procedure

Start Code Composer Studio and Open a Workspace
1. Start Code Composer Studio (CCS) by double clicking the icon on the desktop or

selecting it from the Windows Start menu. When CCS loads, a dialog box will prompt
you for the location of a workspace folder. Use the default location for the workspace
and click OK.

Lab 1: Linker Command File

18 C2000 MCU 1-Day Workshop

This folder contains all CCS custom settings, which includes project settings and views
when CCS is closed so that the same projects and settings will be available when CCS is
opened again. The workspace is saved automatically when CCS is closed.

2. The first time CCS opens a “Welcome to Code Composer Studio v5” page appears.
Close the page by clicking the X on the “TI Resource Explorer” tab. You should now
have an empty workbench. The term workbench refers to the desktop development
environment. Maximize CCS to fill your screen.

The workbench will open in the “CCS Edit Perspective” view. Notice the CCS Edit
icon in the upper right-hand corner. A perspective defines the initial layout views of the
workbench windows, toolbars, and menus which are appropriate for a specific type of
task (i.e. code development or debugging). This minimizes clutter to the user interface.
The “CCS Edit Perspective” is used to create or build C/C++ projects. A “CCS Debug
Perspective” view will automatically be enabled when the debug session is started. This
perspective is used for debugging C/C++ projects.

Setup Target Configuration
3. Open the emulator target configuration dialog box. On the menu bar click:

File New Target Configuration File

In the file name field type F28069_ctrlSTK.ccxml. This is just a descriptive name since
multiple target configuration files can be created. Leave the “Use shared location” box
checked and select Finish.

4. In the next window that appears, select the emulator using the “Connection” pull-down
list and choose “Texas Instruments XDS100v1 USB Emulator”. In the
“Board or Device” box type F28069 to filter the options. In the box below, check the
box to select “controlSTICK – Piccolo F28069”. Click Save to save the
configuration, then close the “F28069_ctrlSTK.ccxml” setup window by clicking the X
on the tab.

5. To view the target configurations, click:

View Target Configurations

and click the plus sign (+) to the left of User Defined. Notice that the
F28069_ctrlSTK.ccxml file is listed and set as the default. If it is not set as the
default, right-click on the .ccxml file and select “Set as Default”. Close the Target
Configurations window by clicking the X on the tab.

Create a New Project
6. A project contains all the files you will need to develop an executable output file (.out)

which can be run on the MCU hardware. To create a new project click:
File New CCS Project

In the Project name field type Lab1. Uncheck

C:\C28x\Labs\Lab1\Project

 the “Use default location” box. Click the
Browse… button and navigate to:

 Lab 1: Linker Command File

C2000 MCU 1-Day Workshop 19

Click OK.

7. The next section selects the device. Select the “Family” using the pull-down list and
choose “C2000”. Set the “Variant” filter using the pull-down list to “2806x
Piccolo” and choose the “controlSTICK – Piccolo F28069”. Leave the
“Connection” box blank. We have already set up the target configuration.

8. Next, open the “Advanced setting” section and set the “Linker command file” to
“<none>”. We will be using our own linker command file, rather than the one supplied
by CCS. Leave the “Runtime Support Library” set to “<automatic>”. This will
automatically select the “rts2800_fpu32.lib” runtime support library for floating-point
devices.

9. Now open the “Project templetes and examples” section and select the very top

10. A new project has now been created. Notice the Project Explorer window
contains Lab1. The project is set Active and the output files will be located in the
Debug folder. At this point, the project does not include any source files. The next step
is to add the source files to the project.

 “Empty
Project” template. (Note: Do not select the second one from the top - this option will
create an empty main.c file in the project, which is not needed for this lab exercise).
Click Finish.

11. To add the source files to the project, right-click on Lab1 in the Project Explorer
window and select:
Add Files…

 or click: Project Add Files…

and make sure you’re looking in C:\C28x\Labs\Lab1\Files. With the “files of
type” set to view all files (*.*) select Lab1.c and Lab1.cmd then click OPEN. A “File
Operation” window will open, choose “Copy files” and click OK. This will add the
files to the project.

12. In the Project Explorer window, click the plus sign (+) to the left of Lab1 and
notice that the files are listed.

Project Build Options
13. There are numerous build options in the project. Most default option settings are

sufficient for getting started. We will inspect a couple of the default options at this time.
Right-click on Lab1 in the Project Explorer window and select Properties or
click:
Project Properties

14. A “Properties” window will open and in the section on the left under “Build” be sure that
the “C2000 Compiler” and “C2000 Linker” options are visible. Next, under “C2000
Linker” select the “Basic Options”. Notice that .out and .map files are being
specified. The .out file is the executable code that will be loaded into the MCU. The
.map file will contain a linker report showing memory usage and section addresses in
memory.

15. Next in the “Basic Options” set the Stack Size to 0x200.

Lab 1: Linker Command File

20 C2000 MCU 1-Day Workshop

16. Under “C2000 Compiler” select the “Processor Options”. Notice the “Use large
memory model” and “Unified memory” boxes are checked. Next, notice the “Specify
CLA support” is set to cla0, the “Specify floating point support” is set to fpu32, and
the “Specify VCU support” is set to vcu0. Select OK to save and close the Properties
window.

Linker Command File – Lab1.cmd
17. Open and inspect Lab1.cmd by double clicking on the filename in the project window.

Notice that the Memory{} declaration describes the system memory shown on the
“Lab1: Linker Command File” slide in the objective section of this lab exercise.
Memory blocks L3DPSARAM and L4SARAM have been placed in program memory on
page 0, and the other memory blocks have been placed in data memory on page 1.

18. In the Sections{} area notice that the sections defined on the slide have been “linked”
into the appropriate memories. Also, notice that a section called .reset has been allocated.
The .reset section is part of the rts2800_fpu32.lib and is not needed. By putting the
TYPE = DSECT modifier after its allocation the linker will ignore this section and not
allocate it. Close the inspected file.

Build and Load the Project
19. Two buttons on the horizontal toolbar control code generation. Hover your mouse over

each button as you read the following descriptions:

 1 Build Full build and link of all source files

 2 Debug Automatically build, link, load and launch debug-session

Button Name Description_____________________________________

20. Click the “Build” button and watch the tools run in the Console window. Check for
errors in the Problems window (we have deliberately put an error in Lab1.c). When
you get an error, you will see the error message in the Problems window. Expand the
problem by clicking on the plus sign (+) to the left of the “Errors”. Then simply double-
click the error message. The editor will automatically open to the source file containing
the error, with the code line highlighted with a question mark (?).

21. Fix the error by adding a semicolon at the end of the “z = x + y” statement. For
future knowledge, realize that a single code error can sometimes generate multiple error
messages at build time. This was not the case here.

22. Build the project again. There should be no errors this time.
23. CCS can automatically save modified source files, build the project, open the debug

perspective view, connect and download it to the target, and then run the program to the
beginning of the main function.
Click on the “Debug” button (green bug) or click Run Debug.

Notice the CCS Debug icon in the upper right-hand corner indicating that we are now in
the “CCS Debug Perspective” view. The program ran through the C-environment
initialization routine in the rts2800_fpu32.lib and stopped at main() in Lab1.c.

 Lab 1: Linker Command File

C2000 MCU 1-Day Workshop 21

Debug Environment Windows
It is standard debug practice to watch local and global variables while debugging code. There
are various methods for doing this in Code Composer Studio. We will examine two of them
here: memory browser, and expressions.

24. Open a “Memory Browser” to view the global variable “z”.

Click: View Memory Browser on the menu bar.

Type &z into the address field, select “Data” memory page, and then select Go. Note
that you must use the ampersand (meaning “address of”) when using a symbol in a
memory browser address box. Also note that CCS is case sensitive.

Set the properties format to “Hex 16 Bit – TI Style Hex” in the browser. This will give
you more viewable data in the browser. You can change the contents of any address in
the memory browser by double-clicking on its value. This is useful during debug.

25. Notice the “Variables” window automatically opened and the local variables x and y are
present. The variables window will always contain the local variables for the code
function currently being executed.

(Note that local variables actually live on the stack. You can also view local variables in
a memory browser by setting the address to “SP” after the code function has been
entered).

26. We can also add global variables to the “Expressions” window if desired. Let's add the
global variable “z”.

Click the “Expressions” tab at the top of the window. In the empty box in the
“Expression” column (Add new expression), type z and then enter. An ampersand is not
used here. The expressions window knows you are specifying a symbol. (Note that the
expressions window can be manually opened by clicking: View Expressions on
the menu bar).

Check that the expressions window and memory browser both report the same value for
“z”. Trying changing the value in one window, and notice that the value also changes in
the other window.

Single-stepping the Code
27. Click the “Variables” tab at the top of the window to watch the local variables. Single-

step through main() by using the <F5> key (or you can use the Step Into button on
the horizontal toolbar). Check to see if the program is working as expected. What is the
value for “z” when you get to the end of the program?

Terminate Debug Session and Close Project
28. The Terminate button will terminate the active debug session, close the debugger and

return CCS to the “CCS Edit Perspective” view.

Click: Run Terminate or use the Terminate icon:

Lab 1: Linker Command File

22 C2000 MCU 1-Day Workshop

29. Next, close the project by right-clicking on Lab1 in the Project Explorer window
and select Close Project.

End of Exercise

 Peripheral Register Header Files

C2000 MCU 1-Day Workshop 23

Peripheral Register Header Files

Traditional Approach to C Coding
#define ADCCTL1 (volatile unsigned int *)0x00007100

...

void main(void)

{

*ADCCTL1 = 0x1234; //write entire register

*ADCCTL1 |= 0x4000; //enable ADC module

}

Disadvantages - Requires individual masks to be generated to
manipulate individual bits

- Cannot easily display bit fields in debugger window
- Will generate less efficient code in many cases

Advantages - Simple, fast and easy to type
- Variable names exactly match register names (easy

to remember)

Structure Approach to C Coding
void main(void)

{

AdcRegs.ADCCTL1.all = 0x1234; //write entire register

AdcRegs.ADCCTL1.bit.ADCENABLE = 1; //enable ADC module

}

Disadvantages - Can be difficult to remember the structure names
(Editor Auto Complete feature to the rescue!)

- More to type (again, Editor Auto Complete feature
to the rescue)

Advantages - Easy to manipulate individual bits
- Watch window is amazing! (next slide)
- Generates most efficient code (on C28x)

Peripheral Register Header Files

24 C2000 MCU 1-Day Workshop

 Peripheral Register Header Files

C2000 MCU 1-Day Workshop 25

Structure Naming Conventions
 The F2806x header files define:

All of the peripheral structures
All of the register names
All of the bit field names
All of the register addresses

PeripheralName.RegisterName.all // Access full 16 or 32-bit register

PeripheralName.RegisterName.half.LSW // Access low 16-bits of 32-bit register

PeripheralName.RegisterName.half.MSW // Access high 16-bits of 32-bit register

PeripheralName.RegisterName.bit.FieldName // Access specified bit fields of register

Notes: [1] “PeripheralName” are assigned by TI and found in the F2806x header files.
They are a combination of capital and small letters (i.e. CpuTimer0Regs).

[2] “RegisterName” are the same names as used in the data sheet.
They are always in capital letters (i.e. TCR, TIM, TPR,..).

[3] “FieldName” are the same names as used in the data sheet.
They are always in capital letters (i.e. POL, TOG, TSS,..).

Peripheral Register Header Files

26 C2000 MCU 1-Day Workshop

F2806x Header File Package
(http://www.ti.com, controlSUITE)

Contains everything needed to use the
structure approach

Defines all peripheral register bits and
register addresses

Header file package includes:

 \F2806x_headers\include .h files
 \F2806x_headers\cmd linker .cmd files
 \F2806x_common\gel .gel files for CCS
 \F2806x_examples code examples
 \doc documentation

controlSUITE Header File Package located at C:\TI\controlSUITE\device_support\

Peripheral Structure .h files (1 of 2)

 Contain bits field structure definitions for each peripheral register
F2806x_Adc.h

#include “F2806x_Device.h"

Void InitAdc(void)
{

/* Reset the ADC module */
AdcRegs.ADCCTL1.bit.RESET = 1;

/* configure the ADC register */
AdcRegs.ADCCTL1.all = 0x00E4;

};

Your C-source file (e.g., Adc.c)

// ADC Individual Register Bit Definitions:
struct ADCCTL1_BITS { // bits description

Uint16 TEMPCONV:1; // 0 Temperature sensor connection
Uint16 VREFLOCONV:1; // 1 VSSA connection
Uint16 INTPULSEPOS:1; // 2 INT pulse generation control
Uint16 ADCREFSEL:1; // 3 Internal/external reference select
Uint16 rsvd1:1; // 4 reserved
Uint16 ADCREFPWD:1; // 5 Reference buffers powerdown
Uint16 ADCBGPWD:1; // 6 ADC bandgap powerdown
Uint16 ADCPWDN:1; // 7 ADC powerdown
Uint16 ADCBSYCHN:5; // 12:8 ADC busy on a channel
Uint16 ADCBSY:1; // 13 ADC busy signal
Uint16 ADCENABLE:1; // 14 ADC enable
Uint16 RESET:1; // 15 ADC master reset

};
// Allow access to the bit fields or entire register:
union ADCCTL1_REG {

Uint16 all;
struct ADCCTL1_BITS bit;

};
// ADC External References & Function Declarations:
extern volatile struct ADC_REGS AdcRegs;

 Peripheral Register Header Files

C2000 MCU 1-Day Workshop 27

Peripheral Structure .h files (2 of 2)

 The header file package contains a .h file for
each peripheral in the device

 F2806x_Device.h
Main include file
Will include all other .h files
 Include this file (directly or indirectly)

in each source file:
#include “F2806x_Device.h”

F2806x_Adc.h F2806x_BootVars.h F2806x_Cla.h
F2806x_Comp.h F2806x_CpuTimers.h F2806x_DevEmu.h
F2806x_Device.h F2806x_Dma.h F2806x_ECan.h
F2806x_ECap.h F2806x_EPwm.h F2806x_EQep.h
F2806x_Gpio.h F2806x_I2c.h F2806x_Mcbsp.h
F2806x_NmiIntrupt.h F2806x_PieCtrl.h F2806x_PieVect.h
F2806x_Sci.h F2806x_Spi.h F2806x_SysCtrl.h
F2806x_Usb.h F2806x_XIntrupt.h

Global Variable Definitions File
F2806x_GlobalVariableDefs.c

 Declares a global instantiation of the structure
for each peripheral

 Each structure is placed in its own section using
a DATA_SECTION pragma to allow linking to the
correct memory (see next slide)

 Add this file to your CCS project:
F2806x_GlobalVariableDefs.c

#include "F2806x_Device.h"
…
#pragma DATA_SECTION(AdcRegs,"AdcRegsFile");
volatile struct ADC_REGS AdcRegs;
…

F2806x_GlobalVariableDefs.c

Peripheral Register Header Files

28 C2000 MCU 1-Day Workshop

Linker Command Files for the Structures
F2806x_nonBIOS.cmd and F2806x_BIOS.cmd

 Links each structure to
the address of the
peripheral using the
structures named
section

 non-BIOS and BIOS
versions of the .cmd file

 Add one of these files to
your CCS project:
F2806x_nonBIOS.cmd

or
F2806x_BIOS.cmd

MEMORY
{
PAGE1:
...
ADC: origin=0x007100, length=0x000080
...

}

SECTIONS
{

...
AdcRegsFile: > ADC PAGE = 1
...

}

F2806x_Headers_nonBIOS.cmd

#include "F2806x_Device.h"
…
#pragma DATA_SECTION(AdcRegs,"AdcRegsFile");
volatile struct ADC_REGS AdcRegs;
…

F2806x_GlobalVariableDefs.c

 Peripheral Register Header Files

C2000 MCU 1-Day Workshop 29

Peripheral Register Header Files
Summary

 Easier code development
 Easy to use
Generates most efficient code
 Increases effectiveness of CCS watch window
 TI has already done all the work!

Use the correct header file package for your device:

Go to http://www.ti.com and enter “controlSUITE” in the keyword search box

• F2806x
• F2803x
• F2802x
• F2833x and F2823x

• F280x and F2801x
• F2804x
• F281x

Reset, Interrupts and System Initialization

30 C2000 MCU 1-Day Workshop

Reset, Interrupts and System Initialization

Reset

Reset Sources

 POR – Power-on Reset generates a device reset during
power-up conditions

 BOR – Brown-out Reset generates a device reset if the
power supply drops below specification for the device

Note: Devices support an on-chip voltage regulator (VREG) to
generate the core voltage

Watchdog Timer

XRS pin active
To XRS pin

F28x core

XRSPower-on Reset

Brown-out Reset

Missing Clock Detect

Logic shown is functional representation, not actual implementation

Reset – Bootloader

TRST = JTAG Test Reset EMU_KEY & EMU_BMODE located in PIE at 0x0D00 & 0x0D01, respectively
OTP_KEY & OTP_BMODE located in OTP at 0x3D7BFB & 0x3D7BFE, respectively

Reset vector
fetched from

boot ROM
0x3F FFC0

Bootloader sets
OBJMODE = 1

AMODE = 0

Emulation Boot
Boot determined by

2 RAM locations:
EMU_KEY and EMU_BMODE

Stand-alone Boot
Boot determined by

2 GPIO pins and
2 OTP locations:

OTP_KEY and OTP_BMODE

TRST = 1 TRST = 0

Reset
OBJMODE = 0

AMODE = 0
ENPIE = 0
INTM = 1

YES NOEmulator
Connected ?

 Reset, Interrupts and System Initialization

C2000 MCU 1-Day Workshop 31

Emulation Boot Mode (TRST = 1)

If either EMU_KEY or EMU_BMODE
are invalid, the “wait” boot mode is
used. These values can then be
modified using the debugger and a
reset issued to restart the boot process

Emulation Boot
Boot determined by

2 RAM locations:
EMU_KEY and EMU_BMODE

Emulator Connected

EMU_KEY = 0x55AA ? Boot Mode
Wait

Boot Mode
Parallel I/O
SCI
GetMode
SPI
I2C
OTP
CAN
M0 SARAM
FLASH
Wait

EMU_BMODE =
0x0000
0x0001
0x0003
0x0004
0x0005
0x0006
0x0007
0x000A
0x000B
other

Boot Mode
FLASH

Boot Mode
SCI
SPI
I2C
OTP
CAN
FLASH

OTP_BMODE =
0x0001
0x0004
0x0005
0x0006
0x0007
other

NO

NO

YES

YES

OTP_KEY = 0x005A ?

Stand-Alone Boot Mode (TRST = 0)

Stand-alone Boot
Boot determined by

2 GPIO pins and
2 OTP locations:

OTP_KEY and OTP_BMODE

Emulator Not Connected

Boot Mode
Parallel I/O
SCI
Wait
GetMode

GPIO GPIO
37 34
0 0
0 1
1 0
1 1

Boot Mode
FLASH

Boot Mode
SCI
SPI
I2C
OTP
CAN
FLASH

OTP_BMODE =
0x0001
0x0004
0x0005
0x0006
0x0007
other

NO

YES

Note that the boot behavior for
unprogrammed OTP is the
“FLASH” boot mode

OTP_KEY = 0x005A ?

Reset, Interrupts and System Initialization

32 C2000 MCU 1-Day Workshop

Reset Code Flow - Summary

M0 SARAM (1Kw)

FLASH (128Kw)

0x3F7FF6

0x3D7800

0x3D8000

0x000000

0x3F8000

0x3FFFC0

Boot ROM (32Kw)

BROM vector (64w)
0x3FF75C

Boot Code

•
•

•
•

RESET

Execution Entry
determined by

Emulation Boot Mode or
Stand-Alone Boot Mode

Bootloading
Routines

(SCI, SPI, I2C,
CAN, Parallel I/O)

0x3FF75C

0x000000

OTP (1Kw)
0x3D7800

Interrupts

Interrupt Sources

ePWM, eCAP, eQEP,
ADC, SCI, SPI, I2C,

eCAN, McBSP,
DMA, CLA, WD

Internal Sources

External Sources

XINT1 – XINT3

TZx

XRS

NMI

F28x CORE

INT1

INT13

INT2
INT3

INT12

INT14

XRS

•••

PIE
(Peripheral
Interrupt

Expansion)

TINT2
TINT1
TINT0

 Reset, Interrupts and System Initialization

C2000 MCU 1-Day Workshop 33

 A valid signal on a specific interrupt line causes the latch
to display a “1” in the appropriate bit

Maskable Interrupt Processing
Conceptual Core Overview

1

0

1

(IFR)
“Latch”

INT1

INT2

INT14

Core
Interrupt

F28x
Core

(INTM)
“Global Switch”

(IER)
“Switch”

 If the individual and global switches are turned “on” the
interrupt reaches the core

Core Interrupt Registers

RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9
89101112131415

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1
01234567

Interrupt Flag Register (IFR)

RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9
89101112131415

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1
01234567

Interrupt Enable Register (IER)

INTMST1
Bit 0Interrupt Global Mask Bit (INTM)

(enable = 0 / disable = 1)

/*** Interrupt Enable Register ***/
extern cregister volatile unsigned int IER;

IER |= 0x0008; //enable INT4 in IER
IER &= 0xFFF7; //disable INT4 in IER

/*** Global Interrupts ***/
asm(“ CLRC INTM”); //enable global interrupts
asm(“ SETC INTM”); //disable global interrupts

(pending = 1 / absent = 0)

(enable = 1 / disable = 0)

Reset, Interrupts and System Initialization

34 C2000 MCU 1-Day Workshop

Peripheral Interrupt Expansion (PIE)

Peripheral Interrupt Expansion - PIE

IF
R

IE
R

IN
TM 28x

Core

28x Core Interrupt logic

PIE module for 96 Interrupts

INT1.x interrupt group
INT2.x interrupt group
INT3.x interrupt group
INT4.x interrupt group
INT5.x interrupt group
INT6.x interrupt group
INT7.x interrupt group
INT8.x interrupt group
INT9.x interrupt group
INT10.x interrupt group
INT11.x interrupt group
INT12.x interrupt group

INT1 – INT12

12 Interrupts

96

INT1.1

INT1.2

INT1.8

1

0

1

•
•
•

•
•
•

INT1

PIEIFR1 PIEIER1
Interrupt Group 1

(TINT1)
(TINT2)

INT13
INT14
NMI

Pe
rip

he
ra

l I
nt

er
ru

pt
s

12

 x
 8

 =
 9

6

F2806x PIE Interrupt Assignment Table
INTx.8 INTx.7 INTx.6 INTx.5 INTx.4 INTx.3 INTx.2 INTx.1

INT1 WAKEINT TINT0 ADCINT9 XINT2 XINT1 ADCINT2 ADCINT1

INT2 EPWM8
_TZINT

EPWM7
_TZINT

EPWM6
_TZINT

EPWM5
_TZINT

EPWM4
_TZINT

EPWM3
_TZINT

EPWM2
_TZINT

EPWM1
_TZINT

INT3 EPWM8
_INT

EPWM7
_INT

EPWM6
_INT

EPWM5
_INT

EPWM4
_INT

EPWM3
_INT

EPWM2
_INT

EPWM1
_INT

INT4 HRCAP2
_INT

HRCAP1
_INT

ECAP3
_INT

ECAP2
_INT

ECAP1
_INT

INT5 HRCAP4
_INT

HRCAP3
_INT

EQEP2
_INT

EQEP1
_INT

INT6 MXINTA MRINTA SPITX
INTB

SPIRX
INTB

SPITX
INTA

SPIRX
INTA

INT7 DINTCH6 DINTCH5 DINTCH4 DINTCH3 DINTCH2 DINTCH1

INT8 I2CINT2A I2CINT1A

INT9 SCITX
INTB

SCIRX
INTB

SCITX
INTA

SCIRX
INTA

INT10 ADCINT8 ADCINT7 ADCINT6 ADCINT5 ADCINT4 ADCINT3 ADCINT2 ADCINT1

INT11 CLA1
_INT8

CLA1
_INT7

CLA1
_INT6

CLA1
_INT5

CLA1
_INT4

CLA1
_INT3

CLA1
_INT2

CLA1
_INT1

INT12 LUF LVF XINT3

ECAN0
_INTA

ECAN1
_INTA

 Reset, Interrupts and System Initialization

C2000 MCU 1-Day Workshop 35

PIE Registers

INTx.2INTx.3INTx.4INTx.5INTx.6INTx.7INTx.8 INTx.1

0123456715 - 8

reserved

PIEIFRx register (x = 1 to 12)

INTx.2INTx.3INTx.4INTx.5INTx.6INTx.7INTx.8 INTx.1

0123456715 - 8

reserved

PIEIERx register (x = 1 to 12)

reserved PIEACKx

PIE Interrupt Acknowledge Register (PIEACK)
124 356789 0101115 - 12

ENPIEPIEVECT

PIECTRL register 015 - 1

#include “F2806x_Device.h”
PieCtrlRegs.PIEIFR1.bit.INTx4 = 1; //manually set IFR for XINT1 in PIE group 1
PieCtrlRegs.PIEIER3.bit.INTx2 = 1; //enable EPWM2_INT in PIE group 3
PieCtrlRegs.PIEACK.all = 0x0004; //acknowledge the PIE group 3
PieCtrlRegs.PIECTRL.bit.ENPIE = 1; //enable the PIE

PIE Block Initialization

•
•
•

// Initialize PIE_RAM

memcpy();
•
•
•

PieCtrl.c

// Enable PIE Block
PieCtrlRegs.
PIECTRL.bit.
ENPIE=1;

• • ••
•
•

// Base Vectors

PieVect.c

PIE_VECT_TABLE

•
•
•

// Core INT1 re-map

// Core INT12 re-map

PIE RAM
Vectors

256w
(ENPIE = 1)

Boot ROM
Reset Vector

1

2
2

3

Memory Map

•
•
•

// CPU Initialization

InitPieCtrl();
•
•
•

Main.c

Reset, Interrupts and System Initialization

36 C2000 MCU 1-Day Workshop

PIE Initialization Code Flow - Summary
RESET

<0x3F FFC0>
Reset Vector

<0x3F F75C> = Boot Code

Flash Entry Point
<0x3F 7FF6> = LB _c_int00

M0SARAM Entry Point
<0x00 0000> = LB _c_int00

_c_int00:

CALL main()

•
•
•

OR

main()
{ initialization();

}

Initialization()
{

Load PIE Vectors
Enable the PIE
Enable PIEIER
Enable Core IER
Enable INTM

}

PIE Vector Table
256 Word RAM

0x00 0D00 – 0DFF

•
•
•

Main.c

rts2800_fpu32.lib

Boot option determines
code execution entry point

interrupt void name(void)
{

}

•
•
•

DefaultIsr.c

Interrupt

CodeStartBranch.asm
.sect “codestart”

Oscillator / PLL Clock Module

F2806x Oscillator / PLL Clock Module
(lab file: SysCtrl.c)

XCLKINOFF

X2 XT
AL

 O
SC

X1

XT
AL

0*
10

XCLKIN

Internal
OSC 1

(10 MHz)

Internal
OSC 2

(10 MHz)

OSCCLKSRC2

0*
1

WDCLKSRCSEL

0*
1

OSCCLKSRCSEL

0*
1

10
11
01
00* CPU

Timer 2
SYSCLKOUT

TMR2CLKSRCSEL

PLL VCOCLK

OSCCLK

C28x
Core

CLKIN

SYSCLKOUT

LOSPCP

LSPCLK

(PLL bypass)

LSPCLK

DIV

SCI, SPI
All other peripherals

clocked by SYSCLKOUT

M
U

X

1/n

DIVSEL

OSC1CLK

OSC2CLK

EXTCLK

Watchdog
Module

WDCLK

CPUTMR2CLK

* = default

 Reset, Interrupts and System Initialization

C2000 MCU 1-Day Workshop 37

F2806x PLL and LOSPCP
(lab file: SysCtrl.c)

DIV CLKIN
0 0 0 0 0 OSCCLK / n * (PLL bypass)
0 0 0 0 1 OSCCLK x 1 / n
0 0 0 1 0 OSCCLK x 2 / n
0 0 0 1 1 OSCCLK x 3 / n
0 0 1 0 0 OSCCLK x 4 / n
0 0 1 0 1 OSCCLK x 5 / n
0 0 1 1 0 OSCCLK x 6 / n
0 0 1 1 1 OSCCLK x 7 / n
0 1 0 0 0 OSCCLK x 8 / n
0 1 0 0 1 OSCCLK x 9 / n
0 1 0 1 0 OSCCLK x 10 / n
0 1 0 1 1 OSCCLK x 11 / n
0 1 1 0 0 OSCCLK x 12 / n
0 1 1 0 1 OSCCLK x 13 / n
0 1 1 1 0 OSCCLK x 14 / n
0 1 1 1 1 OSCCLK x 15 / n
1 0 0 0 0 OSCCLK x 16 / n
1 x x x 1 reserved

Input Clock Fail Detect Circuitry
PLL will issue a “limp mode” clock (1-4 MHz) if input
clock is removed after PLL has locked.
An internal device reset will also be issued (XRSn
pin not driven).

DIVSEL n

0x /4 *
10 /2
11 /1

* default
Note: /1 mode can
only be used when
PLL is bypassed

LSPCLK Peripheral Clk Freq
0 0 0 SYSCLKOUT / 1
0 0 1 SYSCLKOUT / 2
0 1 0 SYSCLKOUT / 4 *
0 1 1 SYSCLKOUT / 6
1 0 0 SYSCLKOUT / 8
1 0 1 SYSCLKOUT / 10
1 1 0 SYSCLKOUT / 12
1 1 1 SYSCLKOUT / 14

PLL VCOCLK

OSCCLK

C28x
Core

CLKIN SYSCLKOUT

LOSPCP

(PLL bypass)

LSPCLKM
U

X

1/n

SysCtrlRegs.PLLCR.bit.DIV

SysCtrlRegs.PLLSTS.bit.DIVSEL

SysCtrlRegs.LOSPCP.bit.LSPCLK

LSBs in reg. – others reserved

Watchdog Timer Module

Watchdog Timer

Resets the C28x if the CPU crashes
Watchdog counter runs independent of CPU
If counter overflows, a reset or interrupt is

triggered (user selectable)
CPU must write correct data key sequence

to reset the counter before overflow
Watchdog must be serviced or disabled

within 131,072 WDCLK cycles after reset
This translates to 13.11 ms with a 10 MHz

WDCLK

Reset, Interrupts and System Initialization

38 C2000 MCU 1-Day Workshop

Watchdog Timer Module
(lab file: Watchdog.c)

WDCLK

System
Reset

8-bit Watchdog
Counter

CLR

Watchdog
Reset Key
Register

55 + AA
Detector

1 0 1
/
/3

3

WDDIS

WDCHK

Bad WDCHK Key

/512

Output
Pulse

WDRST

WDINT

WDOVERRIDE

Good Key

Watchdog
Prescaler

WDPS

GPIO

F2806x GPIO Grouping Overview
(lab file: Gpio.c)

GPIO Port A Mux1
Register (GPAMUX1)

[GPIO 0 to 15] GPIO Port A
Direction Register

(GPADIR)
[GPIO 0 to 31]

G
PIO

 Port A
G

PIO
 Port B

Internal B
us

GPIO Port A Mux2
Register (GPAMUX2)

[GPIO 16 to 31]

GPIO Port B Mux1
Register (GPBMUX1)

[GPIO 32 to 47] GPIO Port B
Direction Register

(GPBDIR)
[GPIO 32 to 63]

AN
A

LO
G

 Port

ANALOG I/O Mux1
Register (AIOMUX1)

[AIO 0 to 15]

ANALOG Port
Direction Register

(AIODIR)
[AIO 0 to 15]

Input
Qual

Input
Qual

GPIO Port B Mux2
Register (GPBMUX2)

[GPIO 48 to 63]

 Reset, Interrupts and System Initialization

C2000 MCU 1-Day Workshop 39

•

F2806x GPIO Pin Block Diagram
(lab file: Gpio.c)

• •
01

00
MUX Control Bits *
00 = GPIO
01 = Peripheral 1
10 = Peripheral 2
11 = Peripheral 3

Peripheral
1

I/O DAT
Bit (R/W) In

Out

I/O DIR Bit
0 = Input
1 = Output

GPxMUX1
GPxMUX2

GPxDIR

GPxDAT

GPxSET
GPxCLEAR

GPxTOGGLE

•• 10

11

Peripheral
2

Peripheral
3

Pin

Internal Pull-Up
0 = enable (default GPIO 12-58)
1 = disable (default GPIO 0-11)

GPxPUD

Input
Qualification

(GPIO 0-44)
GPxQSEL1
GPxQSEL2
GPxCTRL

* See device datasheet for pin function selection matrices

F2806x GPIO Input Qualification

 Qualification available on ports A & B only
 Individually selectable per pin

 no qualification (peripherals only)
 sync to SYSCLKOUT only
 qualify 3 samples
 qualify 6 samples

 AIO pins are fixed as
‘sync to SYSCLKOUT’

Input
Qualificationpin

to GPIO and
peripheral
modules

SYSCLKOUT

T T T

samples taken

T = qual period

Reset, Interrupts and System Initialization

40 C2000 MCU 1-Day Workshop

Lab 2: System Initialization

LAB2 files have been provided
LAB2 consists of two parts:

Part 1
 Test behavior of watchdog when disabled and enabled
Part 2
 Initialize peripheral interrupt expansion (PIE) vectors and

use watchdog to generate an interrupt

Modify, build, and test code using Code
Composer Studio

 Lab 2: System Initialization

C2000 MCU 1-Day Workshop 41

Lab 2: System Initialization
 Objective

The objective of this lab is to perform the processor system initialization. Additionally, the
peripheral interrupt expansion (PIE) vectors will be initialized and tested. The system
initialization for this lab will consist of the following:

• Setup the clock module – PLL, LOSPCP = /4, low-power modes to default values, enable all
module clocks

• Disable the watchdog – clear WD flag, disable watchdog, WD prescale = 1
• Setup the watchdog and system control registers – DO NOT clear WD OVERRIDE bit,

configure WD to generate a CPU reset
• Setup the shared I/O pins – set all GPIO pins to GPIO function (e.g. a "00" setting for GPIO

function, and a “01”, “10”, or “11” setting for peripheral function)

The first part of the lab exercise will setup the system initialization and test the watchdog
operation by having the watchdog cause a reset. In the second part of the lab exercise the PIE
vectors will be tested by using the watchdog to generate an interrupt. This lab will make use of
the F2806x C-code header files to simplify the programming of the device, as well as take care of
the register definitions and addresses. Please review these files, and make use of them in the
future, as needed.

 Procedure

Open the Project
1. A project named Lab2 has been created for this lab. Open the project by clicking on

Project Import Existing CCS/CCE Eclipse Project. The “Import”
window will open then click Browse… next to the “Select search-directory” box.
Navigate to: C:\C28x\Labs\Lab2\Project and click OK. Then click Finish to
import the project.

2. In the Project Explorer window, click the plus sign (+) to the left of Lab2 to view
the project files. All Build Options have been configured for this lab. The files used in
this lab are:

CodeStartBranch.asm Lab.h
DefaultIsr_2.c Lab_2_3.cmd
DelayUs.asm Main_2.c
F2806x_DefaultIsr.h PieCtrl.c
F2806x_GlobalVariableDefs.c PieVect.c
F2806x_Headers_nonBIOS.cmd SysCtrl.c
Gpio.c Watchdog.c

Lab 2: System Initialization

42 C2000 MCU 1-Day Workshop

Modified Memory Configuration
3. Open and inspect the linker command file Lab_2_3.cmd. Notice that the user defined

section “codestart” is being linked to a memory block named BEGIN_M0. The
codestart section contains code that branches to the code entry point of the project. The
bootloader must branch to the codestart section at the end of the boot process. Recall that
the emulation boot mode "M0 SARAM" branches to address 0x000000 upon bootloader
completion.

The linker command file (Lab_2_3.cmd) has a new memory block named BEGIN_M0:
origin = 0x000000, length = 0x0002, in program memory. Additionally, the existing
memory block M0SARAM in data memory has been modified to avoid overlaps with this
new memory block.

4. In the linker command file, notice that RESET in the MEMORY section has been defined
using the “(R)” qualifier. This qualifier indicates read-only memory, and is optional. It
will cause the linker to flag a warning if any uninitialized sections are linked to this
memory. The (R) qualifier can be used with all non-volatile memories (e.g., flash, ROM,
OTP), as you will see in a later lab exercise.

System Initialization
5. Open and inspect SysCtrl.c. Notice that the PLL and module clocks have been

enabled.

6. Open and inspect Watchdog.c. Notice that the watchdog control register (WDCR) is
configured to disable the watchdog, and the system control and status register (SCSR) is
configured to generate a reset.

7. Open and inspect Gpio.c. Notice that the shared I/O pins have been set to the GPIO
function, except for GPIO0 which will be used in the next lab exercise. Close the
inspected files.

Build and Load
8. Click the “Build” button and watch the tools run in the Console window. Check for

errors in the Problems window.

9. Click the “Debug” button (green bug). The “CCS Debug Perspective” view should
open, the program will load automatically, and you should now be at the start of
main().

10. After CCS loaded the program in the previous step, it set the program counter (PC) to
point to _c_int00. It then ran through the C-environment initialization routine in the
rts2800_fpu32.lib and stopped at the start of main(). CCS did not do a device
reset, and as a result the bootloader was bypassed.

In the remaining parts of this lab exercise, the device will be undergoing a reset due to the
watchdog timer. Therefore, we must configure the device by loading values into
EMU_KEY and EMU BMODE so the bootloader will jump to “M0 SARAM” at address
0x000000. Set the bootloader mode using the menu bar by clicking:

Scripts EMU Boot Mode Select EMU_BOOT_SARAM

 Lab 2: System Initialization

C2000 MCU 1-Day Workshop 43

If the device is power cycled between lab exercises, or within a lab exercise, be sure to
re-configure the boot mode to EMU_BOOT_SARAM.

Run the Code – Watchdog Reset
11. Place the cursor in the “main loop” section (on the asm(“ NOP”); instruction line)

and right click the mouse key and select Run To Line. This is the same as setting a
breakpoint on the selected line, running to that breakpoint, and then removing the
breakpoint.

12. Place the cursor on the first line of code in main() and set a breakpoint by double
clicking in the line number field to the left of the code line. Notice that line is
highlighted with a blue dot indicating that the breakpoint has been set. The breakpoint is
set to prove that the watchdog is disabled. If the watchdog causes a reset, code execution
will stop at this breakpoint.

13. Run your code for a few seconds by using the “Resume” button on the toolbar, or by
using Run Resume on the menu bar (or F8 key). After a few seconds halt your
code by using the “Suspend” button on the toolbar, or by using Run Suspend on
the menu bar (or alt-F8 key). Where did your code stop? Are the results as expected? If
things went as expected, your code should be in the “main loop”.

14. Switch to the “CCS Edit Perspective” view by clicking the CCS Edit icon in the upper
right-hand corner. Modify the InitWatchdog() function to enable the watchdog
(WDCR). In Watchdog.c change the WDCR register value to 0x00A8. This will
enable the watchdog to function and cause a reset. Save the file.

15. Click the “Build” button. Select Yes to “Reload the program automatically”. Switch
back to the “CCS Debug Perspective” view by clicking the CCS Debug icon in the
upper right-hand corner.

16. Like before, place the cursor in the “main loop” section (on the asm(“ NOP”);
instruction line) and right click the mouse key and select Run To Line.

17. Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should have stopped at the breakpoint. What happened is as
follows. While the code was running, the watchdog timed out and reset the processor.
The reset vector was then fetched and the ROM bootloader began execution. Since the
device is in emulation boot mode (i.e. the emulator is connected) the bootloader read the
EMU_KEY and EMU_BMODE values from the PIE RAM. These values were
previously set for boot to M0 SARAM bootmode by CCS. Since these values did not
change and are not affected by reset, the bootloader transferred execution to the
beginning of our code at address 0x000000 in the M0SARAM, and execution continued
until the breakpoint was hit in main().

Setup PIE Vector for Watchdog Interrupt
The first part of this lab exercise used the watchdog to generate a CPU reset. This was tested
using a breakpoint set at the beginning of main(). Next, we are going to use the watchdog
to generate an interrupt. This part will demonstrate the interrupt concepts learned in this
module.

Lab 2: System Initialization

44 C2000 MCU 1-Day Workshop

18. Switch to the “CCS Edit Perspective” view by clicking the CCS Edit icon in the upper
right-hand corner. Notice that the following files are included in the project:
DefaultIsr_2.c
PieCtrl.c
PieVect.c

19. In Main_2.c, uncomment the code used to call the InitPieCtrl() function. There
are no passed parameters or return values, so the call code is simply:

 InitPieCtrl();

20. Using the “PIE Interrupt Assignment Table” shown in the slides find the location for the
watchdog interrupt, “WAKEINT”. This is used in the next step.

PIE group #: # within group:

21. In main() notice the code used to enable global interrupts (INTM bit), and in
InitWatchdog() the code used to enable the “WAKEINT” interrupt in the PIE
(using the PieCtrlRegs structure) and to enable core INT1 (IER register).

22. Modify the system control and status register (SCSR) to cause the watchdog to generate
a WAKEINT rather than a reset. In Watchdog.c change the SCSR register value to
0x0002. Save the modified files.

23. Open and inspect DefaultIsr_2.c. This file contains interrupt service routines. The
ISR for WAKEINT has been trapped by an emulation breakpoint contained in an inline
assembly statement using “ESTOP0”. This gives the same results as placing a breakpoint
in the ISR. We will run the lab exercise as before, except this time the watchdog will
generate an interrupt. If the registers have been configured properly, the code will be
trapped in the ISR.

24. Open and inspect PieCtrl.c. This file is used to initialize the PIE RAM and enable
the PIE. The interrupt vector table located in PieVect.c is copied to the PIE RAM to
setup the vectors for the interrupts. Close the modified and inspected files.

Build and Load
25. Click the “Build” button and select Yes to “Reload the program automatically”.

Switch to the “CCS Debug Perspective” view by clicking the CCS Debug icon in the
upper right-hand corner.

Run the Code – Watchdog Interrupt
26. Place the cursor in the “main loop” section, right click the mouse key and select Run

To Line.

27. Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should stop at the “ESTOP0” instruction in the WAKEINT ISR.

 Lab 2: System Initialization

C2000 MCU 1-Day Workshop 45

Terminate Debug Session and Close Project
28. Terminate the active debug session using the Terminate button. This will close the

debugger and return CCS to the “CCS Edit Perspective” view.

29. Next, close the project by right-clicking on Lab2 in the Project Explorer window
and select Close Project.

End of Exercise

Note: By default, the watchdog timer is enabled out of reset. Code in the file
CodeStartBranch.asm has been configured to disable the watchdog. This can be
important for large C code projects (ask your instructor if this has not already been
explained). During this lab exercise, the watchdog was actually re-enabled (or disabled
again) in the file Watchdog.c.

Control Peripherals

46 C2000 MCU 1-Day Workshop

Control Peripherals

ADC Module

ADC Module Block Diagram

12-bit A/D
Converter

SOCx

EOCx

ADCINA0
ADCINA1

ADCINA7

ADCINB0
ADCINB1

ADCINB7

S/H
A

S/H
B

M
U

X

MUX
A

RESULT0
RESULT1
RESULT2

RESULT15

Result
MUX

MUX
B

ADC
Generation

Logic
ADC full-scale
input range is

0 to 3.3V

CHSEL ADC
Interrupt

Logic

SOC0 TRIGSEL CHSEL ACQPS
SOC1 TRIGSEL CHSEL ACQPS
SOC2 TRIGSEL CHSEL ACQPS
SOC3 TRIGSEL CHSEL ACQPS

SOC15 TRIGSEL CHSEL ACQPS SO
C

x
Tr

ig
ge

rs

ADCINT1-9

Software

External Pin
(GPIO/XINT2_ADCSOC)

EPWMxSOCA (x = 1 to 8)
EPWMxSOCB (x = 1 to 8)

CPU Timer (0,1,2)

SOCx Signal ADCINT1
ADCINT2

SOCx Configuration Registers

Example – ADC Triggering (1 of 2)

Sample A2 B3 A7 when ePWM1 SOCB is generated and then generate ADCINT1:

Channel
A2

Sample
7 cycles Result0

Channel
B3

Sample
10 cycles Result1

Channel
A7

Sample
8 cycles Result2

SOC0

SOC1

SOC2

no interrupt

no interrupt

ADCINT1

SOCB (ETPWM1)

As above, but also sample A0 B0 A5 continuously and generate ADCINT2:

Channel
A2

Sample
7 cycles Result0

Channel
B3

Sample
10 cycles Result1

Channel
A7

Sample
8 cycles Result2

SOC0

SOC1

SOC2

no interrupt

no interrupt

ADCINT1

SOCB (ETPWM1)

Channel
A0

Sample
10 cycles Result3

Channel
B0

Sample
15 cycles Result4

Channel
A5

Sample
12 cycles Result5

SOC3

SOC4

SOC5

no interrupt

no interrupt

ADCINT2

ADCINT2

Software Trigger

 Control Peripherals

C2000 MCU 1-Day Workshop 47

Example – ADC Triggering (2 of 2)

Sample all channels continuously and provide Ping-Pong interrupts to CPU/system:

Channel
A0:B0

Sample
7 cycles

SOC0 no interrupt
ADCINT2

Software Trigger Result0
Result1

Channel
A1:B1

Sample
7cycles

SOC2 no interruptResult2
Result3

Channel
A2:B2

Sample
7 cycles

SOC4 no interruptResult4
Result5

Channel
A3:B3

Sample
7 cycles

SOC6 Result6
Result7

Channel
A4:B4

Sample
7 cycles

SOC8 no interruptResult8
Result9

Channel
A5:B5

Sample
7 cycles

SOC10 no interruptResult10
Result11

Channel
A6:B6

Sample
7 cycles

SOC12 no interruptResult12
Result13

Channel
A7:B7

Sample
7 cycles

SOC14 Result14
Result15

ADCINT1

ADCINT2

Comparator

COMP110-bit
DAC

AIO2
AIO10

COMP1OUT

COMP310-bit
DAC

AIO6
AIO14

COMP3OUT

COMP210-bit
DAC

AIO4
AIO12

COMP2OUT
ADC

A0

A1

A2

A3

A4

A5

A6

A7

B0

B1

B2

B3

B4

B5

B6

B7

Control Peripherals

48 C2000 MCU 1-Day Workshop

ADC Control Registers (file: Adc.c)

 ADCTRL1 (ADC Control Register 1)
 module reset, ADC enable
 busy/busy channel
 reference select
 Interrupt generation control

 ADCSOCxCTL (SOC0 to SOC15 Control Registers)
 trigger source
 channel
 acquisition sampling window

 ADCINTSOCSELx (Interrupt SOC Selection 1 and 2 Registers)
 selects ADCINT1 / ADCINT2 trigger for SOCx

 ADCSAMPLEMODE (Sampling Mode Register)
 sequential sampling / simultaneous sampling

 INTSELxNy (Interrupt x and y Selection Registers)
 EOC0 – EOC15 source select for ADCINT1-9

 ADCRESULTx (ADC Result 0 to 15 Registers)

Note: refer to the reference guide for a complete listing of registers

Pulse Width Modulation

What is Pulse Width Modulation?

PWM is a scheme to represent a
signal as a sequence of pulses
fixed carrier frequency
fixed pulse amplitude
pulse width proportional to

instantaneous signal amplitude
PWM energy ≈ original signal energy

t

Original Signal
T

t

PWM representation

 Control Peripherals

C2000 MCU 1-Day Workshop 49

Why use PWM with Power
Switching Devices?

 Desired output currents or voltages are known
 Power switching devices are transistors

Difficult to control in proportional region
Easy to control in saturated region

 PWM is a digital signal ⇒ easy for MCU to output

PWM approx.
of desired
signal

DC Supply

Desired
signal to
system

?
DC Supply

Unknown Gate Signal Gate Signal Known with PWM

PWM

ePWM

ePWM Module Signals and Connections

ePWMx

ePWMx+1

EPWMxSYNCI

EPWMxSYNCO

PIEEPWMxINT

EPWMxTZINT

ePWMx-1

EPWMxSOCB

EPWMxSOCA

ADCCOMP COMPxOUT

EMUSTOP – TZ6

CLOCKFAIL – TZ5

EQEP1ERR – TZ4

CPU

SYSCTRL

eQEP1
EPWMxA

EPWMxB
GPIO
MUX

TZ1 – TZ3GPIO
MUX

Control Peripherals

50 C2000 MCU 1-Day Workshop

ePWM Block Diagram

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

ePWM Time-Base Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

 Control Peripherals

C2000 MCU 1-Day Workshop 51

ePWM Time-Base Count Modes
TBCTR

TBCTR

TBCTR

TBPRD

TBPRD

TBPRD

Count Up Mode

Count Down Mode

Count Up and Down Mode

Asymmetrical
Waveform

Asymmetrical
Waveform

Symmetrical
Waveform

ePWM Phase Synchronization

SyncIn

SyncOut

CTR=zero
CTR=CMPB

X

En

o
o

o

o
o

ooφ=120
Phase . EPWM2A

EPWM2B

SyncIn

SyncOut

CTR=zero
CTR=CMPB

X

En

o
o

o

o
o

ooφ=240
Phase . EPWM3A

EPWM3B

SyncIn

SyncOut

CTR=zero
CTR=CMPB

X

En

o
o

o

o
o

ooφ=0
Phase . EPWM1A

EPWM1B

φ=120

φ=120

φ=240

Ext. SyncIn
(optional)

To eCAP1
SyncIn

Control Peripherals

52 C2000 MCU 1-Day Workshop

ePWM Compare Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

ePWM Compare Event Waveforms
TBCTR

TBCTR

TBCTR

TBPRD

TBPRD

TBPRD

Count Up Mode

Count Down Mode

Count Up and Down Mode

Asymmetrical
Waveform

Asymmetrical
Waveform

Symmetrical
Waveform

CMPA

CMPA

CMPA

CMPB

CMPB

CMPB

.

.

..

. = compare events are fed to the Action Qualifier Sub-Module

 Control Peripherals

C2000 MCU 1-Day Workshop 53

ePWM Action Qualifier Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

ePWM Action Qualifier Actions
for EPWMA and EPWMB

Z
↓

Z
↑

Z
X

Z
T

CA
↓

CA
↑

CA
X

CA
T

CB
↓

CB
↑

CB
X

CB
T

P
↓

P
↑

P
X

P
T

SW
↓

SW
↑

SW
X

SW
T

Do Nothing

Clear Low

Set High

Toggle

S/W
Force

EPWM
Output
Actions

Time-Base Counter equals:

Zero CMPA CMPB TBPRD

Control Peripherals

54 C2000 MCU 1-Day Workshop

ePWM Count Up Asymmetric Waveform
with Independent Modulation on EPWMA / B

Z
↑

P
X

CB
X

CA
↓

Z
↑

P
X

CB
X

CA
↓

Z
↑

P
X

Z
↑

P
X

CB
↓

CA
X

Z
↑

P
X

CB
↓

CA
X

Z
↑

P
X

TBCTR

TBPRD

.
. . .

EPWMA

EPWMB

ePWM Count Up Asymmetric Waveform
with Independent Modulation on EPWMA

CA
↑

CB
↓

CA
↑

CB
↓

Z
T

Z
T

Z
T

TBCTR

TBPRD

. . . .

EPWMA

EPWMB

 Control Peripherals

C2000 MCU 1-Day Workshop 55

ePWM Count Up-Down Symmetric
Waveform

with Independent Modulation on EPWMA / BTBCTR

TBPRD

CA
↑

CA
↓

CA
↑

CA
↓

CB
↑

CB
↓

CB
↑

CB
↓

EPWMA

EPWMB

ePWM Count Up-Down Symmetric
Waveform

with Independent Modulation on EPWMATBCTR

TBPRD

. .. .

CA
↑

CB
↓

CA
↑

CB
↓

Z
↓

P
↑

Z
↓

P
↑

EPWMA

EPWMB

Control Peripherals

56 C2000 MCU 1-Day Workshop

ePWM Dead-Band Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

Motivation for Dead-Band

to power
switching
device

supply rail

gate signals are
complementary PWM

♦ Transistor gates turn on faster than they shut off
♦ Short circuit if both gates are on at same time!

 Control Peripherals

C2000 MCU 1-Day Workshop 57

ePWM PWM Chopper Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

ePWM Chopper Waveform
EPWMxA

EPWMxB

CHPFREQ

EPWMxA

EPWMxB

OSHT

EPWMxA

Programmable
Pulse Width
(OSHTWTH)

Sustaining
Pulses

With One-Shot Pulse on EPWMxA and/or EPWMxB

Control Peripherals

58 C2000 MCU 1-Day Workshop

ePWM Digital Compare and Trip-Zone
Sub-Modules

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

Digital Compare Sub-Module Signals

TZ1

TZ2

TZ3

COMP1OUT

COMP2OUT

COMP3OUT

Digital Trip
Event A1
Compare

Digital Trip
Event A2
Compare

Digital Trip
Event B1
Compare

Digital Trip
Event B2
Compare

Generate PWM Sync
Time-Base Sub-Module

Generate SOCA
Event-Trigger Sub-Module

Trip PWMA Output

Generate Trip Interrupt

Trip-Zone Sub-Module

Generate PWM Sync
Time-Base Sub-Module

Generate SOCB
Event-Trigger Sub-Module

Trip PWMB Output

Generate Trip Interrupt

Trip-Zone Sub-Module

DCAH

DCAL

DCBH

DCBL

DCTRIPSEL TZDCSEL DCACTL / DCBCTL

DCAEVT1

DCAEVT2

DCBEVT1

DCBEVT2

blanking

blanking

 Control Peripherals

C2000 MCU 1-Day Workshop 59

Trip-Zone Features
♦ Trip-Zone has a fast, clock independent logic path to high-impedance

the EPWMxA/B output pins
♦ Interrupt latency may not protect hardware when responding to over

current conditions or short-circuits through ISR software
♦ Supports: #1) one-shot trip for major short circuits or over

current conditions
#2) cycle-by-cycle trip for current limiting operation

CPU
core

P
W
M

O
U
T
P
U
T
S

EPWMxTZINT

EPWM1A

TZ6
TZ5
TZ4
TZ3
TZ2
TZ1

Over
Current
Sensors

Cycle-by-Cycle
Mode

One-Shot
Mode

EPWM1B

EPWMxA
EPWMxB

COMPxOUT Digital
Compare

CPU
SYSCTRL

eQEP1

•
•
•

EMUSTOP
CLOCKFAIL
EQEP1ERR

ePWM Event-Trigger Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

Control Peripherals

60 C2000 MCU 1-Day Workshop

ePWM Event-Trigger Interrupts and SOC
TBCTR
TBPRD

EPWMA

EPWMB

CMPB
CMPA

CTR = 0

CTR = PRD

CTRU = CMPA

CTRD = CMPA

CTRU = CMPB

CTRD = CMPB

CTR = 0 or PRD

Hi-Resolution PWM (HRPWM)

 Significantly increases the resolution of conventionally derived digital PWM
 Uses 8-bit extensions to Compare registers (CMPxHR), Period register

(TBPRDHR) and Phase register (TBPHSHR) for edge positioning control
 Typically used when PWM resolution falls below ~9-10 bits which occurs at

frequencies greater than ~160 kHz (with system clock of 80 MHz)
 Not all ePWM outputs support HRPWM feature (see device datasheet)

PWM Period

Device Clock
(i.e. 80 MHz)

Regular
PWM Step

(i.e. 12.5 ns)

HRPWM
Micro Step (~150 ps)

HRPWM divides a clock
cycle into smaller steps

called Micro Steps
(Step Size ~= 150 ps)

ms ms ms ms ms ms

Calibration Logic

Calibration Logic tracks the
number of Micro Steps per

clock to account for
variations caused by
Temp/Volt/Process

 Control Peripherals

C2000 MCU 1-Day Workshop 61

ePWM Control Registers (file: EPwm.c)

 TBCTL (Time-Base Control)
 counter mode (up, down, up & down, stop); clock prescale; period shadow

load; phase enable/direction; sync select
 CMPCTL (Compare Control)

 compare load mode; operating mode (shadow / immediate)
 AQCTLA/B (Action Qualifier Control Output A/B)

 action on up/down CTR = CMPA/B, PRD, 0 (nothing/set/clear/toggle)
 DBCTL (Dead-Band Control)

 in/out-mode (disable / delay PWMxA/B); polarity select
 PCCTL (PWM-Chopper Control)

 enable / disable; chopper CLK freq. & duty cycle; 1-shot pulse width
 DCTRIPSEL (Digital Compare Trip Select)

 Digital compare A/B high/low input source select
 TZCTL (Trip-Zone Control)

 enable /disable; action (force high / low / high-Z /nothing)
 ETSEL (Event-Trigger Selection)

 interrupt & SOCA/B enable / disable; interrupt & SOCA/B select

Note: refer to the reference guide for a complete listing of registers

eCAP

Capture Module (eCAP)

 The eCAP module timestamps transitions
on a capture input pin

Timer

Timestamp
Values

Trigger

pin

Control Peripherals

62 C2000 MCU 1-Day Workshop

eCAP Module Block Diagram – Capture Mode

32-Bit
Time-Stamp

Counter

Capture 1
Register

Event
Prescale

Polarity
Select 1

Polarity
Select 2

Polarity
Select 3

Polarity
Select 4

Capture 2
Register

Capture 3
Register

Capture 4
Register

Ev
en

t L
og

ic

ECAPx
pin

SYSCLKOUT

CAP1POL

CAP2POL

CAP3POL

CAP4POL

PRESCALE

eCAP Module Block Diagram – APWM Mode

32-Bit
Time-Stamp

Counter

Period
Register

(CAP3)
Period

Register
(CAP1)

Compare
Register

(CAP4)

Compare
Register
(CAP2)

PWM
Compare

Logic ECAP
pin

Shadowed

Shadowed

SYSCLKOUT

immediate
mode

shadow
mode

shadow
mode

immediate
mode

 Control Peripherals

C2000 MCU 1-Day Workshop 63

eQEP

What is an Incremental Quadrature
Encoder?

A digital (angular) position sensor

slots spaced θ deg. apart

photo sensors spaced θ/4 deg. apart

light source (LED)

shaft rotation

Ch. A

Ch. B

Quadrature Output from Photo Sensors

θ

θ/4

Incremental Optical Encoder

How is Position Determined from
Quadrature Signals?

Ch. A

Ch. B

(00) (11)
(10) (01)(A,B) =

00

01

11

10

Quadrature Decoder
State Machine

increment
counter

decrement
counter

Position resolution is θ/4 degrees

Illegal
Transitions;

generate
phase error

interrupt

Control Peripherals

64 C2000 MCU 1-Day Workshop

eQEP Module Connections

Ch. A

Ch. B

Index
Quadrature

Decoder

EQEPxA/XCLK

EQEPxB/XDIR

EQEPxI

EQEPxS

Position/Counter
Compare

Quadrature
Capture

32-Bit Unit
Time-Base

QEP
Watchdog

SYSCLKOUT

Strobe
from homing sensor

 Lab 3: Control Peripherals

C2000 MCU 1-Day Workshop 65

Lab 3: Control Peripherals
 Objective

The objective of this lab is to demonstrate and become familiar with the operation of the on-chip
analog-to-digital converter and ePWM. ePWM1A will be setup to generate a 2 kHz, 25% duty
cycle symmetric PWM waveform. The waveform will then be sampled with the on-chip analog-
to-digital converter and displayed using the graphing feature of Code Composer Studio. The
ADC has been setup to sample a single input channel at a 50 kHz sampling rate and store the
conversion result in a buffer in the MCU memory. This buffer operates in a circular fashion, such
that new conversion data continuously overwrites older results in the buffer.

Two ePWM modules have been configured for this lab exercise:

ePWM1A – PWM Generation

• Used to generate a 2 kHz, 25% duty cycle symmetric PWM waveform

ePWM2 – ADC Conversion Trigger

• Used as a timebase for triggering ADC samples (period match trigger SOCA)

Lab 3: Control Peripherals

ADC
RESULT0

...

data
memoryCPU copies

result to
buffer during
ADC ISR

ePWM2

connector
wire

ADC-
INA0

TB Counter
Compare

Action Qualifier

ePWM1

View ADC
buffer PWM
Samples

Code Composer
Studio

ePWM2 triggering
ADC on period match
using SOCA trigger every
20 µs (50 kHz)

The software in this exercise configures the ePWM modules and the ADC. It is entirely interrupt
driven. The ADC end-of-conversion interrupt will be used to prompt the CPU to copy the results
of the ADC conversion into a results buffer in memory. This buffer pointer will be managed in a
circular fashion, such that new conversion results will continuously overwrite older conversion
results in the buffer. The ADC interrupt service routine (ISR) will also toggle LED LD2 on the
TMS320F28069 controlSTICK as a visual indication that the ISR is running.

Lab 3: Control Peripherals

66 C2000 MCU 1-Day Workshop

Notes
• ePWM1A is used to generate a 2 kHz PWM waveform
• Program performs conversion on ADC channel A0 (ADCINA0 pin)
• ADC conversion is set at a 50 kHz sampling rate
• ePWM2 is triggering the ADC on period match using SOCA trigger
• Data is continuously stored in a circular buffer
• Data is displayed using the graphing feature of Code Composer Studio
• ADC ISR will also toggle the LED LD2 as a visual indication that it is running

 Procedure

Open the Project
1. A project named Lab3 has been created for this lab. Open the project by clicking on

Project Import Existing CCS/CCE Eclipse Project. The “Import”
window will open then click Browse… next to the “Select search-directory” box.
Navigate to: C:\C28x\Labs\Lab3\Project and click OK. Then click Finish to
import the project.

2. In the Project Explorer window, click the plus sign (+) to the left of Lab3 to view
the project files. All Build Options have been configured for this lab. The files used in
this lab are:

Adc.c Gpio.c
CodeStartBranch.asm Lab.h
DefaultIsr_3_4.c Lab_2_3.cmd
DelayUs.asm Main_3.c
EPwm.c PieCtrl.c
F2806x_DefaultIsr.h PieVect.c
F2806x_GlobalVariableDefs.c SysCtrl.c
F2806x_Headers_nonBIOS.cmd Watchdog.c

Setup GPIO and ePWM1

Note: DO NOT make any changes to Gpio.c and EPwm.c – ONLY INSPECT

3. Open and inspect Gpio.c by double clicking on the filename in the project window.
Notice that the shared I/O pin in GPIO0 has been set for the ePWM1A function. Next,
open and inspect EPwm.c and see that the ePWM1 has been setup to implement the
PWM waveform as described in the objective for this lab. Notice the values used in the
following registers: TBCTL (set clock prescales to divide-by-1, no software force, sync
and phase disabled), TBPRD, CMPA, CMPCTL (load on 0 or PRD), and AQCTLA (set
on up count and clear on down count for output A). Software force, deadband, PWM
chopper and trip action has been disabled. (Note that the last steps enable the timer count
mode and enable the clock to the ePWM module). See the global variable names and
values that have been set using #define in the beginning of the Lab.h file. Notice that
ePWM2 has been initialized earlier in the code for the ADC. Close the inspected files.

 Lab 3: Control Peripherals

C2000 MCU 1-Day Workshop 67

Build and Load
4. Click the “Build” button and watch the tools run in the Console window. Check for

errors in the Problems window.

5. Click the “Debug” button (green bug). The “CCS Debug Perspective” view should
open, the program load automatically, and you should now be at the start of Main(). If
the device has been power cycled since the last lab exercise, be sure to configure the boot
mode to EMU_BOOT_SARAM using the Scripts menu.

Run the Code – PWM Waveform
6. Open a memory browser window to view some of the contents of the ADC results buffer.

To open a memory browser window click: View Memory Browser on the menu
bar. The address label for the ADC results buffer is AdcBuf (type &AdcBuf) in the
“Data” memory page. Select Go to view the contents of the ADC result buffer.

Note: Exercise care when connecting any wires, as the power to the controlSTICK is on, and
we do not want to damage the controlSTICK!

7. Using a connector wire provided, connect the PWM1A (pin # 17) to ADCINA0 (pin # 3)
on the controlSTICK.

 Details of pin assignments can be found
on the last page of this lab exercise.

8. Run your code for a few seconds by using the Resume button on the toolbar, or using
Run Resume on the menu bar. After a few seconds halt your code by using the
Suspend button on the toolbar, or by using Run Suspend on the menu bar. Verify
that the ADC result buffer contains the updated values.

9. Open and setup a graph to plot a 50-point window of the ADC results buffer.
Click: Tools Graph Single Time and set the following values:

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

Start Address AdcBuf

Display Data Size 50

Time Display Unit µs

 Select OK to save the graph options.

10. The graphical display should show the generated 2 kHz, 25% duty cycle symmetric
PWM waveform. The period of a 2 kHz signal is 500 µs. You can confirm this by
measuring the period of the waveform using the “measurement marker mode” graph
feature. In the graph window toolbar, left-click on the ruler icon with the red arrow.
Note when you hover your mouse over the icon, it will show “Toggle Measurement

Lab 3: Control Peripherals

68 C2000 MCU 1-Day Workshop

Marker Mode”. Move the mouse to the first measurement position and left-click.
Again, left-click on the Toggle Measurement Marker Mode icon. Move the
mouse to the second measurement position and left-click. The graph will automatically
calculate the difference between the two values taken over a complete waveform period.
When done, clear the measurement points by right-clicking on the graph and select
Remove All Measurement Marks (or Ctrl+Alt+M).

Frequency Domain Graphing Feature of Code Composer Studio
11. Code Composer Studio also has the ability to make frequency domain plots. It does this

by using the PC to perform a Fast Fourier Transform (FFT) of the data. Let's make a
frequency domain plot of the contents in the ADC results buffer (i.e. the PWM
waveform).

Click: Tools Graph FFT Magnitude and set the following values:

Acquisition Buffer Size 50

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

Start Address AdcBuf

Data Plot Style Bar

FFT Order 10

 Select OK to save the graph options.

12. On the plot window, hold the mouse left-click key and move the marker line to observe
the frequencies of the different magnitude peaks. Do the peaks occur at the expected
frequencies?

Using Real-time Emulation
Real-time emulation is a special emulation feature that allows the windows within Code
Composer Studio to be updated at up to a 10 Hz rate while the MCU is running. This not
only allows graphs and watch windows to update, but also allows the user to change values in
watch or memory windows, and have those changes affect the MCU behavior. This is very
useful when tuning control law parameters on-the-fly, for example.

13. The memory and single time graph windows displaying AdcBuf should still be open. The
connector wire between PWM1A (pin # 17) and ADCINA0 (pin # 3) should still be
connected. In real-time mode, we will have our window continuously refresh at the
default rate. To view the refresh rate click:

Window Preferences…

and in the section on the left select the “Code Composer Studio” category. Click the plus
sign (+) to the left of “Code Composer Studio” and select “Debug”. In the section on the
right notice the default setting:

 Lab 3: Control Peripherals

C2000 MCU 1-Day Workshop 69

• “Continuous refresh interval (milliseconds)” = 500

Click OK.

Note: Decreasing the “Continuous refresh interval” causes all enabled continuous refresh
windows to refresh at a faster rate. This can be problematic when a large number of
windows are enabled, as bandwidth over the emulation link is limited. Updating too
many windows can cause the refresh frequency to bog down. In this case you can just
selectively enable continuous refresh for the individual windows of interest.

14. Next we need to enable the graph window for continuous refresh. Select the “Single
Time” graph. In the graph window toolbar, left-click on the yellow icon with the arrows
rotating in a circle over a pause sign. Note when you hover your mouse over the icon, it
will show “Enable Continuous Refresh”. This will allow the graph to
continuously refresh in real-time while the program is running.

15. Enable the memory window for continuous refresh using the same procedure as the
previous step.

16. Run the code and watch the windows update in real-time mode. Click:

Scripts Realtime Emulation Control Run_Realtime_with_Reset

17. Carefully

18. Fully halt the CPU in real-time mode. Click:

 remove and replace the connector wire from ADCINA0 (pin # 3). Are the
values updating as expected?

Scripts Realtime Emulation Control Full_Halt

Terminate Debug Session and Close Project
19. Terminate the active debug session using the Terminate button. This will close the

debugger and return CCS to the “CCS Edit Perspective” view.

20. Next, close the project by right-clicking on Lab3 in the Project Explorer window
and select Close Project.

Optional Exercise
You might want to experiment with this code by changing some of the values or just modify the
code. Try generating another waveform of a different frequency and duty cycle. Also, try to
generate complementary pair PWM outputs. Next, try to generate additional simultaneous
waveforms by using other ePWM modules. Hint: don’t forget to setup the proper shared I/O pins,
etc. (This optional exercise requires some further working knowledge of the ePWM.
Additionally, it may require more time than is allocated for this lab. Therefore, you may want to
try this after the class).

End of Exercise

Lab 3: Control Peripherals

70 C2000 MCU 1-Day Workshop

Lab Reference: F28069 controlSTICK Header Pin Diagram

1
ADC-A6

COMP3 (+VE)

2
ADC-A2

COMP1 (+VE)

3
ADC-A0

4
3V3

5
ADC-A4

COMP2 (+VE)

6
ADC-B1

7
EPWM-4B
GPIO-07

8
TZ1

GPIO-12

9
SCL-A

GPIO-33

10
ADC-B6

COMP3 (-VE)

11
EPWM-4A
GPIO-06

12
ADC-A1

13
SDA-A

GPIO-32

14
ADC-B0

15
EPWM-3B
GPIO-05

16
5V0

(Disabled by
Default)

17
EPWM-1A
GPIO-00

18
ADC-B4

COMP2 (-VE)

19
EPWM-3A
GPIO-04

20
SPISOMI-A

GPIO-17

21
EPWM-1B
GPIO-01

22
ADC-A5

23
EPWM-2B
GPIO-03

24
SPISIMO-A

GPIO-16

25
SPISTE-A
GPIO-19

26
ADC-B2

COMP1 (-VE)

27
EPWM-2A
GPIO-02

28
GND

29
SPICLK-A
GPIO-18

30
GPIO-34

(LED)

31
PWM1A-DAC

(Filtered)

32
GND

 Flash Programming

C2000 MCU 1-Day Workshop 71

Flash Programming

Flash Programming Basics

Flash Programming Basics
 The device CPU itself performs the flash programming
 The CPU executes Flash utility code from RAM that reads the Flash

data and writes it into the Flash
 We need to get the Flash utility code and the Flash data into RAM

FLASH CPU

RAM

TMS320F2806x

JTAGEmulator

SPI

Flash
Utility
Code

Flash
Data I2C

R
O

M
B

oo
tlo

ad
er

CAN

SCIRS232

GPIO

Flash Programming

72 C2000 MCU 1-Day Workshop

Programming Utilities and CCS Flash Programmer

Flash Programming Utilities
 JTAG Emulator Based

 Code Composer Studio on-chip Flash programmer
 BlackHawk Flash utilities (requires Blackhawk emulator)
 Elprotronic FlashPro2000
 Spectrum Digital SDFlash JTAG (requires SD emulator)
 Signum System Flash utilities (requires Signum emulator)

 SCI Serial Port Bootloader Based
 Code-Skin (http://www.code-skin.com)
 Elprotronic FlashPro2000

 Production Test/Programming Equipment Based
 BP Micro programmer
 Data I/O programmer

 Build your own custom utility
 Can use any of the ROM bootloader methods
 Can embed flash programming into your application
 Flash API algorithms provided by TI

* TI web has links to all utilities (http://www.ti.com/c2000)

 Flash Programming

C2000 MCU 1-Day Workshop 73

Code Security Module and Password

Code Security Module (CSM)

 Data reads and writes from restricted memory are only
allowed for code running from restricted memory

 All other data read/write accesses are blocked:
JTAG emulator/debugger, ROM bootloader, code running in
external memory or unrestricted internal memory

 Access to the following on-chip memory is restricted:
Flash Registers0x000A80

L0 DPSARAM (2Kw)
L1 DPSARAM (1Kw)
L2 DPSARAM (1Kw)
L3 DPSARAM (4Kw)

User OTP (1Kw)

ADC / OSC cal. data

reserved

reserved

FLASH (128Kw)
PASSWORDS (8w)

reserved

0x008000
0x008800
0x008C00

0x00A000
0x009000

0x3D7800
0x3D7C00
0x3D7C80
0x3D7CC0
0x3D8000
0x3F7FF8
0x3F8000

L4 DPSARAM (8Kw)
0x00C000

CSM Password

 128-bit user defined password is stored in Flash

 128-bit KEY registers are used to lock and unlock
the device
Mapped in memory space 0x00 0AE0 – 0x00 0AE7
Registers “EALLOW” protected

0x3F7FF8 - 0x3F7FFF

CSM Password
Locations (PWL)

FLASH (128Kw)

0x3D8000

128-Bit Password0x3F7FF8

Flash Programming

74 C2000 MCU 1-Day Workshop

CSM Password Match Flow

Flash device
secure after

reset or runtime

Do dummy reads of PWL
0x3F 7FF8 – 0x3F 7FFF

Start Device permanently locked

Device unlocked
User can access on-
chip secure memory

Write password to KEY registers
0x00 0AE0 – 0x00 0AE7

(EALLOW) protected

Correct
password?

Is PWL =
all Fs?

Is PWL =
all 0s?

Yes

Yes

Yes

No

No

No

 Lab 4: Programming the Flash

C2000 MCU 1-Day Workshop 75

Lab 4: Programming the Flash
 Objective

The objective of this lab is to program and execute code from the on-chip flash memory. The
TMS320F28069 device has been designed for standalone operation in an embedded system.
Using the on-chip flash eliminates the need for external non-volatile memory or a host processor
from which to bootload. In this lab, the steps required to properly configure the software for
execution from internal flash memory will be covered.

Lab 4: Programming the Flash

Objective:

 Program system into Flash Memory

 Learn use of CCS Flash Programmer

 DO NOT PROGRAM PASSWORDS

ADC
RESULT0

ePWM2

connector
wire

TB Counter
Compare

Action Qualifier

ePWM1
ADCINA0

ePWM2 triggering
ADC on period match
using SOCA trigger every
20 µs (50 kHz)

...

data
memory

CPU copies
result to
buffer during
ADC ISR

View ADC
buffer PWM
Samples

Code Composer
Studio

 Procedure

Open the Project
1. A project named Lab4 has been created for this lab. Open the project by clicking on

Project Import Existing CCS/CCE Eclipse Project. The “Import”
window will open then click Browse… next to the “Select search-directory” box.
Navigate to: C:\C28x\Labs\Lab4\Project and click OK. Then click Finish to
import the project.

2. In the Project Explorer window, click the plus sign (+) to the left of Lab4 to view
the project files. All Build Options have been configured for this lab. The files used in
this lab are:

Lab 4: Programming the Flash

76 C2000 MCU 1-Day Workshop

Adc.c Gpio.c
CodeStartBranch.asm Lab.h
DefaultIsr_3_4.c Lab_4.cmd
DelayUs.asm Main_4.c
EPwm.c Passwords.asm
F2806x_DefaultIsr.h PieCtrl.c
F2806x_GlobalVariableDefs.c PieVect.c
F2806x_Headers_nonBIOS.cmd SysCtrl.c
Flash.c Watchdog.c

Link Initialized Sections to Flash
Initialized sections, such as code and constants, must contain valid values at device power-up.
Stand-alone operation of an F28069 embedded system means that no emulator is available to
initialize the device RAM. Therefore, all initialized sections must be linked to the on-chip flash
memory.

Each initialized section actually has two addresses associated with it. First, it has a LOAD
address which is the address to which it gets loaded at load time (or at flash programming time).
Second, it has a RUN address which is the address from which the section is accessed at runtime.
The linker assigns both addresses to the section. Most initialized sections can have the same
LOAD and RUN address in the flash. However, some initialized sections need to be loaded to
flash, but then run from RAM. This is required, for example, if the contents of the section needs
to be modified at runtime by the code.

3. Open and inspect the linker command file Lab_4.cmd. Notice that a memory block
named FLASH_ABCDEFGH has been been created at origin = 0x3D8000, length =
0x01FF80 on Page 0. This flash memory block length has been selected to avoid
conflicts with other required flash memory spaces. See the reference slide at the end of
this lab exercise for further details showing the address origins and lengths of the various
memory blocks used.

4. In Lab_4.cmd the following compiler sections have been linked to on-chip flash
memory block FLASH_ABCDEFGH:

Compiler Sections:

.text .cinit .const .econst .pinit .switch

Copying Interrupt Vectors from Flash to RAM
The interrupt vectors must be located in on-chip flash memory and at power-up needs to be
copied to the PIE RAM as part of the device initialization procedure. The code that performs this
copy is located in InitPieCtrl(). The C-compiler runtime support library contains a
memory copy function called memcpy() which will be used to perform the copy.

5. Open and inspect InitPieCtrl() in PieCtrl.c. Notice the memcpy() function used to
initialize (copy) the PIE vectors. At the end of the file a structure is used to enable the
PIE.

 Lab 4: Programming the Flash

C2000 MCU 1-Day Workshop 77

Initializing the Flash Control Registers
The initialization code for the flash control registers cannot execute from the flash memory (since
it is changing the flash configuration!). Therefore, the initialization function for the flash control
registers must be copied from flash (load address) to RAM (run address) at runtime. The memory
copy function memcpy() will again be used to perform the copy. The initialization code for the
flash control registers InitFlash() is located in the Flash.c file.

6. Open and inspect Flash.c. The C compiler CODE_SECTION pragma is used to place
the InitFlash() function into a linkable section named “secureRamFuncs”.

7. The “secureRamFuncs” section will be linked using the user linker command file
Lab_4.cmd. Open and inspect Lab_4.cmd. The “secureRamFuncs” will load to
flash (load address) but will run from L4SARAM (run address). Also notice that the
linker has been asked to generate symbols for the load start, load end, and run start
addresses.

While not a requirement from a MCU hardware or development tools perspective (since
the C28x MCU has a unified memory architecture), historical convention is to link code
to program memory space and data to data memory space. Therefore, notice that for the
L4SARAM memory we are linking “secureRamFuncs” to, we are specifiying “PAGE
= 0” (which is program memory).

8. Open and inspect Main_4.c. Notice that the memory copy function memcpy() is being
used to copy the section “secureRamFuncs”, which contains the initialization
function for the flash control registers.

9. The following line of code in main() is used call the InitFlash() function. Since
there are no passed parameters or return values the code is just:

 InitFlash();

 at the desired spot in main().

Code Security Module and Passwords
The CSM module provides protection against unwanted copying (i.e. pirating!) of your code from
flash, OTP memory, and the L0, L1, L2, L3 and L4 RAM blocks. The CSM uses a 128-bit
password made up of 8 individual 16-bit words. They are located in flash at addresses 0x3F7FF8
to 0x3F7FFF. During this lab, dummy passwords of 0xFFFF will be used – therefore only
dummy reads of the password locations are needed to unsecure the CSM. DO NOT PROGRAM
ANY REAL PASSWORDS INTO THE DEVICE. After development, real passwords are
typically placed in the password locations to protect your code. We will not be using real
passwords in the workshop.

The CSM module also requires programming values of 0x0000 into flash addresses 0x3F7F80
through 0x3F7FF5 in order to properly secure the CSM. Both tasks will be accomplished using a
simple assembly language file Passwords.asm.

10. Open and inspect Passwords.asm. This file specifies the desired password values
(DO NOT CHANGE THE VALUES FROM 0xFFFF) and places them in an initialized

Lab 4: Programming the Flash

78 C2000 MCU 1-Day Workshop

section named “passwords”. It also creates an initialized section named “csm_rsvd”
which contains all 0x0000 values for locations 0x3F7F80 to 0x3F7FF5 (length of 0x76).

11. Open Lab_4.cmd and notice that the initialized sections for “passwords” and
“csm_rsvd” are linked to memories named PASSWORDS and CSM_RSVD,
respectively.

Executing from Flash after Reset
The F28069 device contains a ROM bootloader that will transfer code execution to the flash after
reset. When the boot mode selection is set for “Jump to Flash” mode, the bootloader will branch
to the instruction located at address 0x3F7FF6 in the flash. An instruction that branches to the
beginning of your program needs to be placed at this address. Note that the CSM passwords
begin at address 0x3F7FF8. There are exactly two words available to hold this branch
instruction, and not coincidentally, a long branch instruction “LB” in assembly code occupies
exactly two words. Generally, the branch instruction will branch to the start of the C-
environment initialization routine located in the C-compiler runtime support library. The entry
symbol for this routine is _c_int00. Recall that C code cannot be executed until this setup routine
is run. Therefore, assembly code must be used for the branch. We are using the assembly code
file named CodeStartBranch.asm.

12. Open and inspect CodeStartBranch.asm. This file creates an initialized section
named “codestart” that contains a long branch to the C-environment setup routine.
This section has been linked to a block of memory named BEGIN_FLASH.

13. In the earlier lab exercises, the section “codestart” was directed to the memory
named BEGIN_M0. Open and inspect Lab_4.cmd and notice that the section
“codestart” will now be directed to BEGIN_FLASH. Close the inspected files.

On power up the reset vector will be fetched and the ROM bootloader will begin execution. If
the emulator is connected, the device will be in emulator boot mode and will use the EMU_KEY
and EMU_BMODE values in the PIE RAM to determine the bootmode. This mode was utilized
in an earlier lab. In this lab, we will be disconnecting the emulator and running in stand-alone
boot mode (but do not disconnect the emulator yet!). The bootloader will read the OTP_KEY
and OTP_BMODE values from their locations in the OTP. The behavior when these values have
not been programmed (i.e., both 0xFFFF) or have been set to invalid values is boot to flash
bootmode.

Build – Lab.out
14. Click the “Build” button to generate the Lab.out file to be used with the CCS Flash

Programmer. Check for errors in the Problems window.

Programming the On-Chip Flash Memory
In CCS the on-chip flash programmer is integrated into the debugger. When the program is
loaded CCS will automatically determine which sections reside in flash memory based on the
linker command file. CCS will then program these sections into the on-chip flash memory.
Additionally, in order to effectively debug with CCS, the symbolic debug information (e.g.,
symbol and label addresses, source file links, etc.) will automatically load so that CCS knows

 Lab 4: Programming the Flash

C2000 MCU 1-Day Workshop 79

where everything is in your code. Clicking the “Debug” button in the “CCS Edit Perspective”
will automatically launch the debugger, connect to the target, and program the flash memory in a
single step.

15. Program the flash memory by clicking the “Debug” button (green bug). (If needed,
when the “Progress Information” box opens select “Details >>” in order to watch
the programming operation and status). After successfully programming the flash
memory the “Progress Information” box will close.

Running the Code – Using CCS
16. Reset the CPU using the “Reset CPU” button or click:

Run Reset Reset CPU

The program counter should now be at address 0x3FF75C in the “Disassembly” window,
which is the start of the bootloader in the Boot ROM. If needed, click on the “View
Disassembly…” button in the window that opens, or click View Disassembly.

17. Under Scripts on the menu bar click:
EMU Boot Mode Select EMU_BOOT_FLASH.
This has the debugger load values into EMU_KEY and EMU_BMODE so that the
bootloader will jump to "FLASH" at address 0x3F7FF6.

18. Single-Step by using the <F5> key (or you can use the Step Into button on the
horizontal toolbar) through the bootloader code until you arrive at the beginning of the
codestart section in the CodeStartBranch.asm file. (Be patient, it will take about
125 single-steps). Notice that we have placed some code in CodeStartBranch.asm
to give an option to first disable the watchdog, if selected.

19. Step a few more times until you reach the start of the C-compiler initialization routine at
the symbol _c_int00.

20. Now do Run Go Main. The code should stop at the beginning of your
main()routine. If you got to that point succesfully, it confirms that the flash has been
programmed properly, that the bootloader is properly configured for jump to flash mode,
and that the codestart section has been linked to the proper address.

21. You can now run the CPU, and you should observe the LED on the controlSTICK
blinking. Try resetting the CPU, select the EMU_BOOT_FLASH boot mode, and then
hitting run (without doing all the stepping and the Go Main procedure). The LED should
be blinking again.

22. Halt the CPU.

Terminate Debug Session and Close Project
23. Terminate the active debug session using the Terminate button. This will close the

debugger and return CCS to the “CCS Edit Perspective” view.

24. Next, close the project by right-clicking on Lab4 in the Project Explorer window
and select Close Project.

Lab 4: Programming the Flash

80 C2000 MCU 1-Day Workshop

Running the Code – Stand-alone Operation (No Emulator)
25. Close Code Composer Studio.

26. Disconnect the controlSTICK from the computer USB port.

27. Re-connect the controlSTICK to the computer USB port.

28. The LED should be blinking, showing that the code is now running from flash memory.

End of Exercise

 Lab 4: Programming the Flash

C2000 MCU 1-Day Workshop 81

Lab 4 Reference: Programming the Flash

Flash Memory Section Blocks

PASSWORDS
length = 0x8

page = 0

BEGIN_FLASH
length = 0x2

page = 0

CSM_RSVD
length = 0x76

page = 0

FLASH
length = 0x1FF80

page = 0

0x3D 8000

0x3F 7F80

0x3F 7FF6

0x3F 7FF8

origin =

SECTIONS
{

codestart :> BEGIN_FLASH, PAGE = 0
passwords :> PASSWORDS, PAGE = 0
csm_rsvd :> CSM_RSVD, PAGE = 0

}

Lab_4.cmd

Startup Sequence from Flash Memory

0x3F 7FF6

0x3D 8000

0x3F 8000

0x3F FFC0

Boot ROM (32Kw)

BROM vector (32w)
0x3F F75C

Boot Code

RESET

0x3F F75C
{SCAN GPIO}

FLASH (128Kw)

Passwords (8w)
_c_int00

LB

“rts2800_ml.lib”

“user” code sections

_c_int00

main ()
{

}

2

3

4

5

1

……
……
……

The Next Step…

82 C2000 MCU 1-Day Workshop

The Next Step…
Training

controlSUITE

 The Next Step…

C2000 MCU 1-Day Workshop 83

Development Tools

The Next Step…

84 C2000 MCU 1-Day Workshop

 The Next Step…

C2000 MCU 1-Day Workshop 85

The Next Step…

86 C2000 MCU 1-Day Workshop

C2000 Workshop Download Wiki

Development Support

For More Information . . .
 USA – Product Information Center (PIC)

 Phone: 800-477-8924 or 972-644-5580
 E-mail: support@ti.com

 TI E2E Community (videos, forums, blogs)
 http://e2e.ti.com

 Embedded Processor Wiki
 http://processors.wiki.ti.com

 TI Training
 http://www.ti.com/training

 TI eStore
 http://estore.ti.com

 TI website
 http://www.ti.com

	Important Notice
	Revision History
	Mailing Address
	Workshop Topics
	Workshop Introduction
	Architecture Overview
	Programming Development Environment
	Code Composer Studio
	Linking Sections in Memory

	Lab 1: Linker Command File
	System Description
	Placement of Sections:
	Start Code Composer Studio and Open a Workspace
	Setup Target Configuration
	Create a New Project
	Project Build Options
	Linker Command File – Lab1.cmd
	Build and Load the Project
	Debug Environment Windows
	Single-stepping the Code
	Terminate Debug Session and Close Project
	End of Exercise

	Peripheral Register Header Files
	Reset, Interrupts and System Initialization
	Reset
	Interrupts
	Peripheral Interrupt Expansion (PIE)
	Oscillator / PLL Clock Module
	Watchdog Timer Module
	GPIO

	Lab 2: System Initialization
	Open the Project
	Modified Memory Configuration
	System Initialization
	Build and Load
	Run the Code – Watchdog Reset
	Setup PIE Vector for Watchdog Interrupt
	Build and Load
	Run the Code – Watchdog Interrupt
	Terminate Debug Session and Close Project
	End of Exercise

	Control Peripherals
	ADC Module
	Pulse Width Modulation
	ePWM
	eCAP
	eQEP

	Lab 3: Control Peripherals
	Notes
	Open the Project
	Setup GPIO and ePWM1
	Build and Load
	Run the Code – PWM Waveform
	Frequency Domain Graphing Feature of Code Composer Studio
	Using Real-time Emulation
	Terminate Debug Session and Close Project
	Optional Exercise
	End of Exercise

	Lab Reference: F28069 controlSTICK Header Pin Diagram

	Flash Programming
	Flash Programming Basics
	Programming Utilities and CCS Flash Programmer
	Code Security Module and Password

	Lab 4: Programming the Flash
	Open the Project
	Link Initialized Sections to Flash
	Copying Interrupt Vectors from Flash to RAM
	Initializing the Flash Control Registers
	Code Security Module and Passwords
	Executing from Flash after Reset
	Build – Lab.out
	Programming the On-Chip Flash Memory
	Running the Code – Using CCS
	Terminate Debug Session and Close Project
	Running the Code – Stand-alone Operation (No Emulator)
	End of Exercise

	Lab 4 Reference: Programming the Flash

	The Next Step…
	Training
	controlSUITE
	C2000 Workshop Download Wiki
	Development Support

