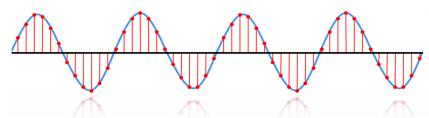

Stellaris® ARM® Cortex™ M4F 培训



Stellaris® ARM® Cortex™ M4F 培训

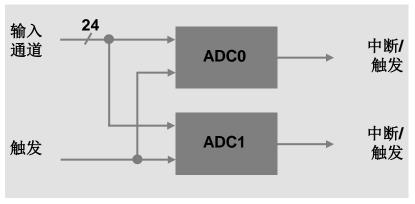
模拟外设

ADC 与模拟比较器

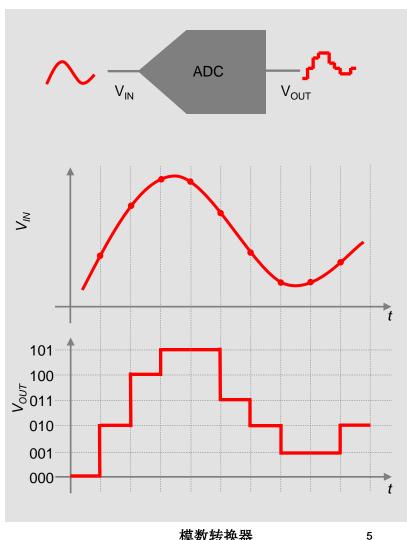
议程 - 模拟外设

- Section 1 (Key Concepts)
 - Part 1: Analog-to-Digital Converter
 - Part 2: Analog Comparator

- Section 2
 - Getting started with ADC using EK-LM4F232
- Section 3
 - Exercises


第一部分:模数转换器

- 模数转换器
- 主要特性与规格
- 方框图与信号说明
- 功能说明
 - ADC 模块时钟
 - 采样序列
 - ADC 参考电压
 - 差分采样
 - 采样相位控制
 - 硬件采样平均电路
 - 内部温度传感器
 - 数字比较器单元



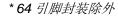
模数转换器

- Stellaris LM4F MCU 具有两个 ADC 模块 (ADC0 和 ADC1),可用于将连续的模拟电压 转换为离散的数字值
- 每个 ADC 模块具有 12 位分辨率
- 每个 ADC 模块独立运作,因而能够:
 - 执行不同的采样序列
 - 对 24 个模拟输入通道中的任一个进行采样
 - 产生不同的中断与触发源

Stellaris LM4F MCU 中的 ADC 可实现方案

第一部分:模数转换器

- 模数转换器
- 主要特性与规格
- 方框图与信号说明
- 功能说明
 - ADC 模块时钟
 - 样本排序器
 - ADC 电压基准
 - 差分采样
 - 样本相位控制
 - 硬件样本平均电路
 - 内部温度传感器
 - 数字比较器单元


主要特性

周密设计,

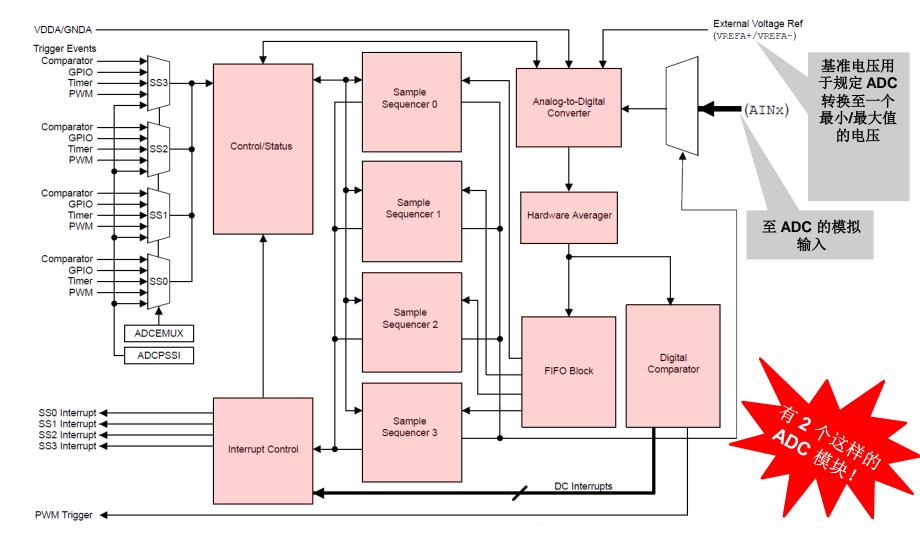
- 12 位精度 ADC
- 24 个共用模拟输入通道
- 单端与差分输入配置
- 片上内部温度传感器
- 最大采样速率为每秒 100 万次采样 (1MSPS)
- 可选的基准信号(VDDA、GNDA或两个 外部电压*)
- 4个可编程采样转换排序器

- 灵活的触发控制
 - 控制器/软件
 - 定时器
 - 模拟比较器
 - 脉宽调制 (PWM)
 - 通用输入输出 (GPIO)
- 对多达 64 个采样进行硬件平均处理以改善准确度
- 每个 ADC 带 8 个数字比较器
- 采用 µDMA 的高效传输
- 采样时间里的任选相移,可设置范围从 22.5°至337.5°

主要规格

规格*	符号	Stellaris LM4F 系列
ADC 通道的数量	n	24
分辨率	N	12 位
ADC 电源电压	V_{DDA}	2.9 至 3.6V
	V_{REFA+}	2.4V 至 V _{DDA}
	V _{REFA} -	0 至 0.3 V
采用内部基准电压的单端、全标度模拟输入		0至V _{DDA}
采用外部基准电压的单端、全标度模拟输入		V _{REFA} - 至 V _{REFA} +
采用内部基准电压的差分、全标度模拟输入	V _{ADCIN}	-V _{DDA} 至 V _{DDA}
采用外部基准电压的差分、全标度模拟输入		-[V _{REFA+} - V _{REFA-}] 至 [V _{REFA+} - V _{REFA-}]
转换时间	T _{ADCCONV}	1 μs
转换速率	F _{CONV}	1 MSPS
积分非线性误差	INL	\pm 1.5LSB
差分非线性误差	DNL	\pm 0.8 LSB
偏移误差	Eo	\pm 1 LSB
全标度增益误差	E _G	\pm 2 LSB
总不可调整误差	E _T	± 3.5 LSB

^{*} 在 T= -40° C 至 85° C 的温度范围内以及 12 位分辨率和 1MSPS 采样速率条件下。



第一部分:模数转换器

- 模数转换器
- 主要特性与规格
- 方框图与信号说明
- 功能说明
 - ADC 模块时钟
 - 样本排序器
 - ADC 电压基准
 - 差分采样
 - 样本相位控制
 - 硬件样本平均电路
 - 内部温度传感器
 - 数字比较器单元

方框图与信号说明

ADC 模块的功能方框图

TEXAS INSTRUMENTS

第一部分:模数转换器

- 模数转换器
- 主要特性与规格
- 方框图与信号说明
- 功能说明
 - ADC 模块时钟
 - 样本排序器
 - ADC 电压基准
 - 差分采样
 - 样本相位控制
 - 硬件样本平均电路
 - 内部温度传感器
 - 数字比较器单元

功能说明

ADC 模块定时

- 时钟源
 - ADC 控制逻辑电路的运行频率为16 MHz。
 - 根据 ADCCC 寄存器中 CS 位的数值,可以将 PLL 或 PIOSC (16 MHz) 选择作为一个时钟源。
 - 如果 ADC 模块未将 PLL/PIOSC 用作其时钟源,则系统时钟的运行频率至少必须为 16
- 低功耗模式中的操作
 - 假如 PIOSC 被选择作为 ADC 控制逻辑电路的时钟源,则 ADC 可工作于**深度睡眠**模式。
- 必须先通过设定 RCGCADC 寄存器中的 Rx 位(对于 ADC0, x=0; 对于 ADC1, x=1) 以 启用 ADC 时钟, 然后才能使用 ADC 模块。

采样序列

- Stellaris LM4F 器件上的 ADC 采用一种基于可编程序列的方法进行数据的收集和采样。
- 每个采样序列都是一系列完全可编程的连续(背对背)样本,因而允许 ADC 模块不必重新配置即可从多个输入信号源收集数据。
- 每个 ADC 模块具有 4 个采样排序器,用于控制采样与数据捕获。
- 所有的采样排序器都是相同的,唯一的差别在于其能够捕获的样本数量以及 **FIFO** 的深度。
- 如欲配置一个采样序列,则需要下列信息:
 - 输入信号源
 - 模式(单端或差分)
 - 采样结束时的中断发生
 - 用于序列中最后一个样本的指示符
- μDMA 操作:每个 ADC 样本排序器具有一个专用的 μDMA 通道。每个样本排序器能够独立地传输数据。

排序器	样本的数量	FIFO 的深度
SS 3	1	1
SS 2	4	4
SS 1	4	4
SS 0	8	8

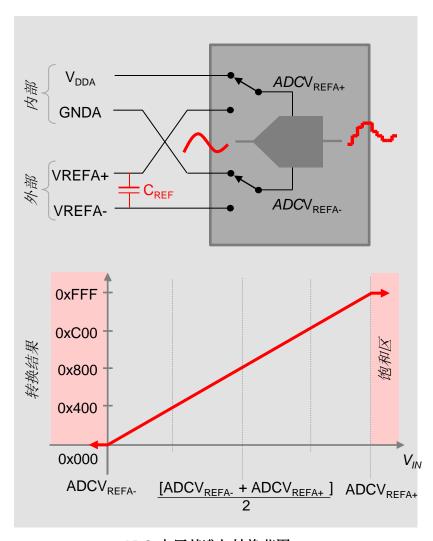
ADC 样本排序器

ADC 基准电压

- ADC 采用 ADCV_{REFA+} 和 ADCV_{REFA-} 基准电压以产生一个转换值。
- ADC 的内部/外部基准电压可以采用 ADCCTL 寄存器中的 VREF 位来选择。
- 分辨率(在单端模式中):

$$mv/ADC\ Code = \frac{ADCV_{REF+} - ADCV_{REF-}}{4096}$$

• 范围:


$$V_{IN} \in \{ADCV_{REFA-}, ADCV_{REFA+}\}$$

$$VREFA- \in \{0, 0.3V\}$$

$$VREFA+ \in \{2.4V, VDDA\}$$

$$Output \in \{0x000, 0xFFF\}$$

• ADC 在欠压和过压情况下发生饱和(<mark>阴影区域</mark>)

ADC 电压基准与转换范围

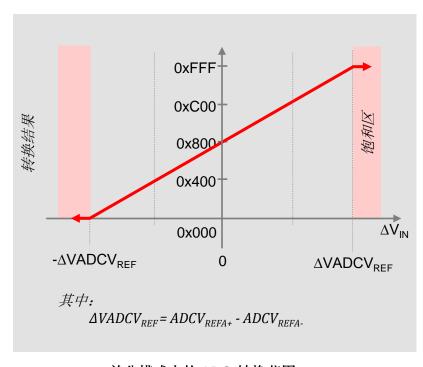
14

差分采样

- ADC 还允许对两个模拟输入通道进行差分采样。
 - 差分输入对可在 ADCSSMUXn 寄存器中进行配置。
 - 差分采样可通过设定 ADCSSCTLO 中的 Dn 位来启用。
- 差分输入对 'n' 负责对连续的偶数和奇数模拟输入通道之间的电压差 (ΔV_{IN}) 进行采样。

$$\Delta V_{IN} = V_{EVEN_IN_CH} - V_{ODD_IN_CH} = V_{2n} - V_{2n+1}$$

$$where, n \in \{0,11\}$$


• 对于转换准确度:

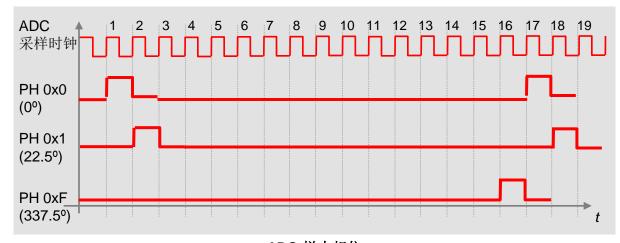
$$\Delta V_{IN} \in \{-\Delta VADCV_{REF}, \Delta VADCV_{REF}\}$$

• 分辨率:

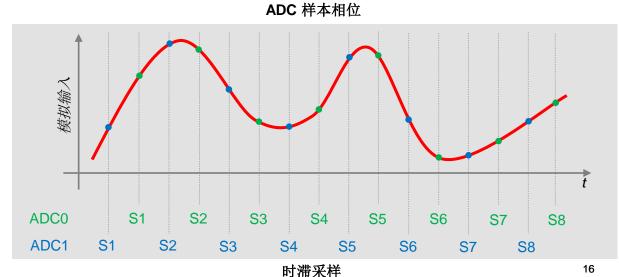
$$mv/ADC\ Code = 2 \times \frac{[ADCV_{REF+} - ADCV_{REF-}]}{4096}$$

• ADC 转换在欠压和过压情况下饱和(阴影区域)

差分模式中的 ADC 转换范围

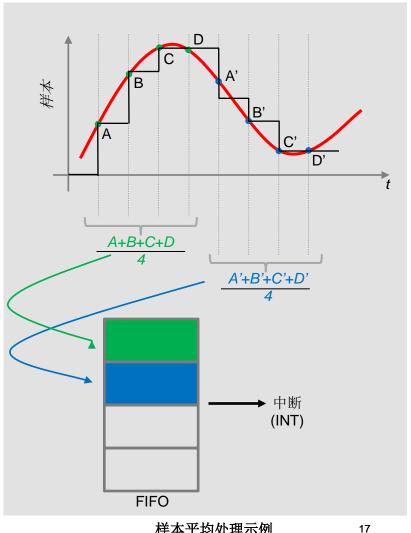

15

样本相位控制


• ADC 样本相位

- ADC0 和 ADC1 可采用相同的触发信号源来操作。
- 如果它们是处于相同频率 的采样数据,则转换的起 点可分 15 个 22.5°的离 散增量(从 0°至高达 337.5°)进行延迟。

• 时滞采样

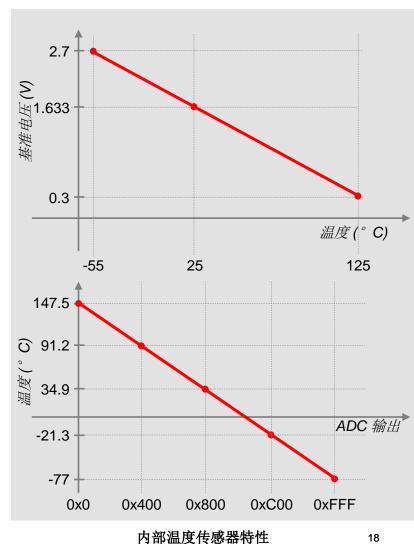

- ADC0 和 ADC1 可以彼此异相的方式使用。
- 采样数据可利用软件进行 组合。
- 这实际上可将转换带宽倍 增至高达 2MSP3.

硬件样本平均电路

- 硬件样本平均电路可用于生成精度较高的结果。
- 可对多达 64 个样本进行累加与平均处理以在排序器 FIFO中形成单个数据登记项。
- 按照默认设置,硬件样本平均电路是关断的。
 - 所有来自转换器的数据均通过排序器
 - 平均处理受控于 ADCSAC 寄存器
- 对所有的通道进行同等的平均处理,而不考虑其配置 (单端或差分)。
- 示例: 如果 ADCSAC 寄存器中的 AVG 值为 **0x02**,则 将进行 4x 平均处理。假如 ADCSSCTLO 寄存器中的 IE 位被置位,那么当 FIFO 获得第二个数据登记项时 将生成一个中断。
- 折衷: 吞吐量随着平均计算中样本数量的增加成比例地 降低。

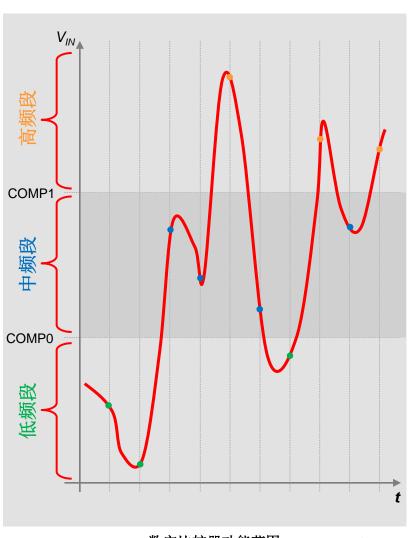
样本平均处理示例

内部温度传感器


- 内部温度传感器模块包括:
 - 负责给各种模拟外设提供基准电压的带隙基准 电路。

$$V_{REF} = 2.7 - \frac{T_{[^{\circ}c]} + 55}{75}$$

- 片上内部温度传感器。

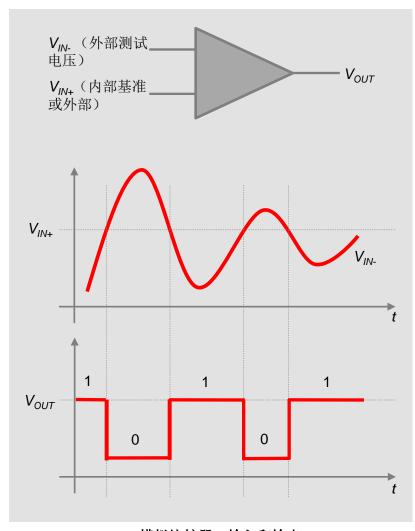

$$T_{[^{\circ}c]} = 147.5 - \frac{225 \times ADC_{OUTPUT}}{4095}$$

- 内部温度传感器服务于以下主要用途:
 - 检测晶片温度以实现可靠的系统操作。
 - 提供温度测量以校准冬眠模块的 RTC 修整值。
- 温度可通过设定 ADCSSCTLn 寄存器中的 TSn 位进行采样。

数字比较器单元

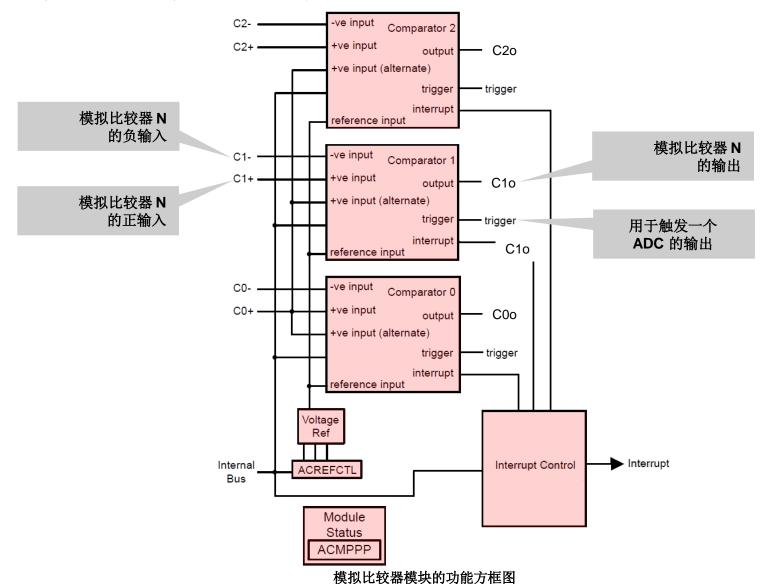
- 数字比较器负责比较 ADC 模块的输出与用户可编程限值。 根据比较的结果,可相应地生成一个处理器中断信号或针对 PWM 模块的触发信号。
- 每个 ADC 模块包含 8 个数字比较器。
- 操作模式:
 - 始终运行模式
 - 一次模式
 - 迟滞模式
 - 迟滞始终运行模式
- 模式可以使用 ADCCTLn 寄存器中的 CIM 或 CTM 位来选择。
- 功能范围:
 - 低频段
 - 中频段
 - 高频段
- 功能范围可以使用 ADCDCCMPn 寄存器中的 COMP0 和 COMP1 位来选择。
- 始终不变的是: COMP1 ≥ COMP0。

第二部分:模拟比较器


- 主要特性
- 方框图与信号说明
- 功能说明

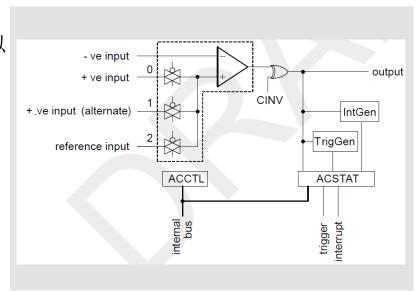
模拟比较器的主要特性

- 模拟比较器用于比较两个模拟电压,并根据比较的结果提供一个逻辑输出。
- 集成在 Stellaris MCU 中的 3 个模拟比较器可单 独用于:
 - 比较两个模拟信号并替代一个外部/分立模拟 比较器以节省板级空间和系统成本。
 - 驱动一个外部引脚
 - 触发一个 ADC
 - 采用中断向某个应用电路发送指示信号



模拟比较器: 输入和输出

21


方框图与信号说明

TEXAS INSTRUMENTS

功能说明

- 如果 V_{IN}- < V_{IN} ⇒ V_{OUT} = 1
- 如果 V_{IN}- > V_{IN} ⇒ V_{OUT} = 0
- V_{IN}- 的信号源是一个外部输入 (C0-)。
- V_{IN} + 的信号源可以是下面的任一个,就是说:可以将一个测试电压(即: V_{IN} -)与下列电压中的任一个进行比较:
 - 一个专用的外部基准电压
 - 单个共用的外部基准电压 (C0+)
 - 一个共用的内部基准电压,(V_{IRFE})
- 比较器通过 ACCTL 和 ACSTAT 寄存器进行配置。
- 内部电压基准通过 ACREFCTL 寄存器进行配置。
- 中断通过 ACMIS、ACRIS 和 ACINTEN 寄存器进行配置。

比较器单元的结构

易用性与驱动程序库 API

StellarisWare[®]

- 在驱动程序库 (DriverLib) 中提供了 API, 助力跨越式启动开发工作。
- void ADCComparatorConfigure (unsigned long ulBase, unsigned long ulComp, unsigned long ulConfig)
- void ADCComparatorIntClear (unsigned long ulBase, unsigned long ulStatus)
- void ADCComparatorIntDisable (unsigned long ulBase, unsigned long ulSequenceNum)
- void ADCComparatorIntEnable (unsigned long ulBase, unsigned long ulSequenceNum)
- unsigned long ADCComparatorIntStatus (unsigned long ulBase)
- void ADCComparatorRegionSet (unsigned long ulBase, unsigned long ulComp, unsigned long ulLowRef, unsigned long ulHighRef)
- void ADCComparatorReset (unsigned long ulBase, unsigned long ulComp, tBoolean bTrigger, tBoolean bInterrupt)
- void ADCHardwareOversampleConfigure (unsigned long ulBase, unsigned long ulFactor)
- void ADCIntClear (unsigned long ulBase, unsigned long ulSequenceNum)
- void ADCIntDisable (unsigned long ulBase, unsigned long ulSequenceNum)
- void ADCIntEnable (unsigned long ulBase, unsigned long ulSequenceNum)
- void ADCIntRegister (unsigned long ulBase, unsigned long ulSequenceNum, void (*pfnHandler)(void))
- unsigned long ADCIntStatus (unsigned long ulBase, unsigned long ulSequenceNum, tBoolean bMasked)
- void ADCIntUnregister (unsigned long ulBase, unsigned long ulSequenceNum)
- unsigned long ADCPhaseDelayGet (unsigned long ulBase)
- void ADCPhaseDelaySet (unsigned long ulBase, unsigned long ulPhase)
- void ADCProcessorTrigger (unsigned long ulBase, unsigned long ulSequenceNum)
- unsigned long ADCReferenceGet (unsigned long ulBase)
- void ADCReferenceSet (unsigned long ulBase, unsigned long ulRef)
- void ADCSequenceConfigure (unsigned long ulBase, unsigned long ulSequenceNum, unsigned long ulTrigger, unsigned long ulPriority)
- long ADCSequenceDataGet (unsigned long ulBase, unsigned long ulSequenceNum, unsigned long *pulBuffer)

下载用户驱动程序库手册, www.ti.com/stellaris

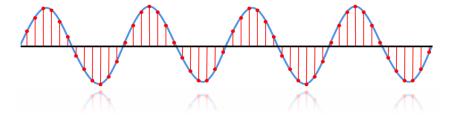
.. 其他还有很多。

想了解更多信息吗?

- 文档
 - 器件的数据表
 - www.ti.com/stellaris
 - 驱动程序库用户手册
 - 勘误表等
- 软件
 - 代码范例
 - 驱动程序库 API 等
 - www.ti.com/stellarisware
- 联系 Stellaris 专家!
 - 培训与技术支持
 - e2e.ti.com
 - 市场营销信息
 - <u>stellaris-marketing@ti.com</u>

TI E2E 社区里的 Stellaris 内部论坛

动手实验班练习


请继续阅读第2节和第3节,了解动手实验课程方面的信息。

第 2 节: 采用 EK-LM4F232 启动 ADC 的开发

第3节:实习

备用幻灯片

ADC 与 µDMA 操作

- µDMA 可用于完成从 ADC 样本排序器的高效数据传输 ,而无需 CPU 的干预或进行重新配置。
- 每个 ADC 样本排序器具有一个专用的 µDMA 通道。
 - 因此,每个样本排序器都能独立地传输数据。
- ADC 模块从每个样本排序器向关联的 μDMA 通道提供 一个突发请求信号以进行直接存储器存取。
 - 当 ADCSSCTLn 寄存器中的 IE 位被置位时,将启动一个 突发传输请求。
 - 不支持单一传输请求。
- µDMA 传输的仲裁规模必须是一个二次幂。

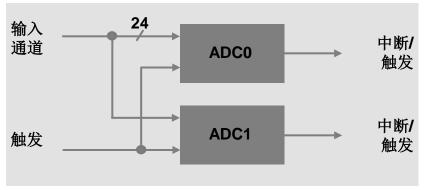
ADCx SSy	uDMA 通道
ADC0 SS0	14
ADC0 SS1	15
ADC0 SS2	16
ADC0 SS3	17
ADC1 SS0	24
ADC1 SS1	25
ADC1 SS2	26
ADC1 SS3	27

ADC 通道分配

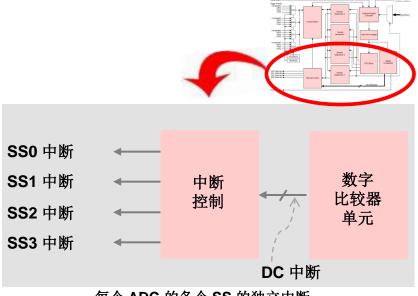
中断生成

- 中断可以在下列情况下生成:
 - 样本排序器完成了一个信号的采样;
 - 硬件样本平均电路完成了样本的平均处理:
 - 基于操作模式在数字比较器的某个输入端上承受了一个特定的电压。

• 启用中断:


- 中断信号受控于 ADCIM 寄存器中的 MASK 位配置。
- **DC** 中断功能通过设定 ASDDCCTLn 寄存器中的 CIE 位来启用。

• 监视中断状态


- 原始中断信号可从 ADCRIS 寄存器读取。
- 在 ADCIM 寄存器中启动的中断信号可从 ASCISC 寄存器读取。

• 清除中断

- 样本排序器中断:通过将"1"写入 ADCISC 寄存器中的 Inx 位来清除。
- 数字比较器中断:通过将"1"写入 ADCDCISC 寄存器来清除。

每个 ADC 的独立中断发生

每个 ADC 的各个 SS 的独立中断

29

