TI MCUs for Motor Control Application

Brian Chang TI MCU FAE

Agenda

- Introduction of TI MCU for Motor Control
- Introduction of the C2000 for Motor Control
- Single-Shunt Phase Current Reconstruction
- Implementation of Single-Shunt Phase Current Reconstruction with C2000
- Practical Measurement Results
- Summary

27 Years at the Forefront of Motor Control

TI MCU Portfolio: Silicon to Solutions

What is C2000[™]?

The 32-bit real-time microcontroller family

C2000 – Always Differentiating

2011 – Concerto MCU Family added M3 for Host Motor Control is our Bread and Butter Business Communications C28x for **Motor Control** and we're just getting started... 2005 – 1st Sim and Visual Code Gen 2011 – FPU added from Mathworks & VisSim to Piccolo 2010's 2002 – 32-bit 28x DSP Core Up to 150MHz 1995 – DSP seen as excellent for 2012 – New Motor IP Servo Control 2000's 1971 – The Beginning TI Invents the Integrated Motor IP microcontroller 1990 2007 – Floating Point Added to increase math 1970 performance 2009 – Control Law 1997 – F24x is 16-bit DSP Accelerator aimed at MC **To Drive Multiple Motors** 2009 – Piccolo Dedicated for Low Cost & **High Performance** 2000 - LF240

C2000[™] 32-bit MCU Roadmap

100+ Code Compatible Devices

All pricing is to be considered budgetary and subject to change. Pricing is 1KU SRP -40 to 105°C.

C2000 Leads in Performance for DSP algo's

DSP Benchmarks

FIR (32 block, 32 taps)

Cycles:

- C2000 is 3x better performance 32-floating pt. FIR
- C2000 is up to 2x better performance 16-bit FIR

Code Density:

- C2000 is >7x better code density 32floating pt. FIR
- C2000 is 7x better code density 16floating pt. FIR

What is the Control Law Accelerator (CLA)?

Independent 32-bit floating-point math accelerator

Operates independently of the C28x CPU

 Independent register set, memory bus structure & processing unit

Low interrupt response time

Direct access to on-chip peripherals • Execution of algorithms in parallel with the C28x CPU

Fully programmable: IEEE 32-bit floating

• Removes scaling and saturation burden

Control Law Accelerator

The Control Law Accelerator on Piccolo F2803x devices is an independent math accelerator that can execute algorithms in parallel with the C28x CPU

- Direct control of Analog and PWMs
- Parallel Processing
- Piccolo 03x: 64-80 pins, \$4-\$5

- Higher Clock Frequencies
- C-programmable
- Delfino 33x/34x: 176+pins, \$8+

Example Cont	rol Loop	C28 (60MHz) Cycles	C28 + (60N Cyc	⊦ CLA IHz) Ies
2 x PMSM FOC	10 KHz	2400	2400	0
PFC	60 KHz	300	0	250
Total Loop cycles	10 KHz	4200	2400	1500
CPU Load		70% 18 MIPS Remain	40 36 MIPS	% Remain

2x MIPS for rest of system!

CLA enhances control-loop
processing with:

Lowest latency to

ADC/PWM

- Better code density
- Higher Cycle Efficiency
- Floating-Point instructions

Piccolo F2805x Series

Performance

- 60 MHz 28x CPU
- 60 MHz CLA Floating Point Co-Processor

Embedded Memory

- Up to 128 KB Flash
- Up to 20 KB SRAM
- Boot ROM
- Dual 128-bit Security Key Protected Zones (Flash & ROM)

Flexible Control Peripherals

- 14 enhanced PWM channels (ePWM) with fault mgmt
- 12-bit ADC up to 2.3 MSPS with dual sample and hold
- Up to 4x programmable gain amplifiers (2x, 5x, 10x)
- Up to 7x windowed analog comparators + 10-bit DAC
- 32-bit enhanced input capture module (eCAP)
- Quadrature encoder interface (QEP)

Communication Interfaces

- 3x SCI/UART modules
- SPI module
- I2C bus
- CAN 2.0

Other Features

- Single 3.3V supply with integrated POR/BOR
- Dual on-chip oscillators (10 MHz) with clock fail detect
- 80-pin QFP
- -40 to 105/125^o C (Automotive AEC Q-100 Qualified)

Applications: Motor Control & Drives, White Goods, Digital Power, UPS, Renewable Energy, Power & Protection

Piccolo F2805x Memory C28x 32-bit CPU **Power & Clocking** Dual 10 MHz OSC 60 MHz Up to 128 KB 32x32-bit HW Multiplier 4-20 MHz Ext OSC Flash RMW Atomic ALU Up to 20 KB 3.3v VREG SRAM POR/Brown-Out CLA System Modules Co-Processor 2x 128-bit Secure Zones 60 MHz 3x 32-bit CPU Timers Boot ROM Debua Watchdog Timer 96 Interrupt PIE **Real Time JTAG** Analog **Control Peripherals** 12-bit ADC, Up to 2.3 MSPS 7x ePWM Modules eCAP 16 channels 14x Outputs eQEP Up to 4x PGA/Op Amps Fault Trip Zones 7x Windowed Comparators w/ 10-bit DAC Temperature Sensor **Communication Peripherals** 3x UART CAN 2.0 SPI 12C

Piccolo F2802x0 Entry Line

Performance

• 40-50 MHz 28x CPU

Embedded Memory

- 16-32 KB Flash
- 6-8 KB SRAM
- Boot ROM
- 128-bit Security Key

Flexible Control Peripherals

- · 6 enhanced PWM channels (ePWM) with fault mgmt
- •12-bit ADC up to 1.25 MSPS with dual sample and hold
- Up to 2x analog comparators + 10-bit DAC with slope compensation
- 32-bit enhanced input capture module (eCAP)

Communication Interfaces

- SCI/UART module
- SPI module
- I2C bus

Other Features

- Single 3.3V supply with integrated POR/BOR
- Dual on-chip oscillators (10 MHz) with clock fail detect
- 38-pin TSSOP, 48-pin QFP
- -40 to 105 Temp Range

Applications: Motor Control (Washing Machines, Pumps, Refrigerators, Compressors, Induction Cooking, A/C)

Piccolo F2802x0

C28x 32-bit CPU 40-50 MHz 32x32-bit HW Multiplier RMW Atomic ALU	Memory 16-32 KB Flash 6-8 KB SRAM 128-bit Security Boot ROM Debug Real Time JTAG	Power & Clocking Dual 10 MHz OSC 4-20 MHz Ext OSC 3.3v VREG POR/Brown-Out System Modules 3x 32-bit CPU Timers Watchdog Timer 96 Interrupt PIE
Control Peripherals 3x ePWM Modules 6x Outputs eCAP Fault Trip Zones	Comms Peripherals UART I2C SPI	Analog 12-bit ADC, Up to 1.25 MSPS 6.8 channels 2x Comparators w/ 10-bit DAC Temperature Sensor

Piccolo 05x ADC designed for motor control

05x Integrated Op-Amps & windowed comparators

OpAm **OPA376** F2805x **Kinetis-**K60 Gain 2, 5, 10 External 1, 2, 4, 8, 16.32. Settings Resistors 64 Input 0.2mV 5uV 0.2mV Offset Gain 0.1% 0.001% Accuracy N/A Slew Rate 30V/us 2V/us

- Individual current feedback for each motor phase
- Integrated fault protection for system robustness and less pin utilization
- High-performance, programmable OpAmps for accurate and on-time system feedback

FOC Introduction

Demands on motor control

- Smooth rotation over entire speed range
- Full torque control at zero speed
- Fast acceleration and deceleration

Field Oriented Control (Vector Control)

Field Oriented Control

- Decomposition of the three-phase stator currents into
 - magnetic field-generating part

► i^eds

torque-generating part
 ▶ i^e_{qs}

Rotor flux position is estimated using motor quantities

- Measurement of phase voltages
- Measurement of phase currents (three/two/single shunt)

Introduction

Processing of motor quantities ^[1]

Low side shunt current measurement

Three Shunts

Two Shunts

Single-Shunt

Current determination in DC-Link line (two examples)

top switches state: 100 bottom switches state: 011

top switches state: 110 bottom switches state: 001

Complementary PWM signals in each leg

top switches state: 100 bottom switches state: 011

top switches state: 110 bottom switches state: 001

Complementary PWM signals in each leg

top switches state: 100 bottom switches state: 011

top switches state: 110 bottom switches state: 001

Complementary PWM signals in each leg

DC-Link current table

S _{AH}	S _{BH}	S _{CH}	I _{DC}
С	NC	NC	+I _A
NC	С	NC	+I _B
NC	NC	С	+I _c
NC	С	С	-I _A
С	NC	С	-I _B
С	С	NC	-I _C

V_{DC} S_{AH} S_{AH} S_{BH} S_{BH} S_{BH} S_{CH} S_{CH}

C: Conducting Transistor (1)

NC: Non-Conducting Transistor (0)

DC-Link current measurements must be done during time interval of active voltage vectors At least one sample per V2 and V3 => two different currents measured: $+I_A$, $-I_C$

Active voltage duration must be large enough for valid current measurements

Challenges (explained in detail in next section)

- Compensation of ripple in reconstructed phase currents

Phase current ripple compensation

Determine sampling points for DC-Link current measurements

Basic implementation without PWM compensation

- Large enough active voltage duration is not maintained
 - Current measurements during too small active voltage durations are not valid
- Wide variances in reconstructed phase currents as result

Worst current reconstruction performance

Advanced implementation with PWM compensation

- Large enough active voltage duration is maintained in every cycle
 - 1. PWM Duty Cycle Compensation

Better current reconstruction performance

2. PWM Phase Shift Compensation

Best current reconstruction performance

Phase current ripple compensation

Can be applied to basic or advanced implementation type
 => improves current reconstruction performance

PWM Duty Cycle Compensation (simple)[2]

PWM with **maximum duty cycle** is **extended**.

PWM with **minimum duty cycle** is **shortened**.

PWM with **midrange duty cycle** remains **unchanged**.

V2 and V3 become large enough active voltage durations.

Advantage: Only one PWM CMP value necessary

Disadvantage:

Distortion of phase voltages. S_{AL} larger than original S_{BL} smaller than original

PWM Phase Shift Compensation (more complex)

PWM with **maximum duty cycle** is **right shifted**.

PWM with **minimum duty cycle** is **left shifted**.

PWM with **midrange duty cycle** remains **unchanged**.

V2 and V3 in second half of PWM period become large enough active voltage durations.

Advantage:

No distortion of phase voltages. PWM duty cycles remain unchanged.

Disadvantage:

Two PWM CMP values used.

Measurement error of Sample1 and Sample2

Sample1: $-I_C = -I_{C_av} - \Delta_1$ Sample2: $I_B = I_{B_av} - \Delta_2$

Current Ripple Compensation

Sector	Sector Part			Transition
	Beginning	Middle	End	Offset
1	$I_{A_{av}}$ - Δ	I _{A_av}	$I_{A_{av}} + \Delta$	-3∆
2	I _{A_av} - 2∆	I _{A_av} - Δ	I _{A_av}	Δ
3	$I_{A_{av}} + \Delta$	$I_{A_{av}} + \Delta$	$I_{A_{av}} + \Delta$	0
4	$I_{A_{av}} + \Delta$	$I_{A_{av}} + \Delta$	$I_{A_{av}} + \Delta$	-Δ
5	I _{A_av}	$I_{A_{av}}$ - Δ	I _{A_av} - 2∆	3∆
6	$I_{A_{av}} + \Delta$	I _{A_av}	I _{A_av} - Δ	0

Current Ripple Compensation

PMSM motor model:

$$V_S = R_S \cdot i_S + L_S \cdot \frac{di_S}{dt} + V_{EMF}$$

$$\frac{di_S}{dt} = -\frac{R_S}{L_S} \cdot i_S + \frac{1}{L_S} \left(V_S - V_{EMF} \right)$$

with:

 V_{s} = measured motor quantity (DC-bus voltage) – phase voltages V_{EMF} = estimated in SMO (sliding mode observer) module i_{s} = measured motor quantity (DC-link current) – phase currents R_{s} = motor stator resistance L_{s} = motor stator inductance

Current Ripple Compensation

PMSM motor model in stationary reference frame:

$$\frac{dI_{\alpha}}{dt} = -\frac{Rs}{Ls} \cdot I_{\alpha} + \frac{1}{Ls} \cdot (V_{\alpha} - E_{\alpha}) \qquad \qquad \frac{dI_{\beta}}{dt} = -\frac{Rs}{Ls} \cdot I_{\beta} + \frac{1}{Ls} \cdot (V_{\beta} - E_{\beta})$$

Current change of rate in original phase domain:

$$\begin{bmatrix} dI_{a0,1}/dt \\ dI_{b0,1}/dt \\ dI_{c0,1}/dt \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1/2 & \sqrt{3}/2 \\ -1/2 & -\sqrt{3}/2 \end{bmatrix} \cdot \begin{bmatrix} dI_{\alpha0,1}/dt \\ dI_{\beta0,1}/dt \end{bmatrix}$$

Offset correction values:

$$\begin{bmatrix} \Delta I_{a1} \\ \Delta I_{b1} \\ \Delta I_{c1} \end{bmatrix} = \begin{bmatrix} dI_{a0}/dt \\ dI_{b0}/dt \\ dI_{c0}/dt \end{bmatrix} \cdot t_{min}$$

$$\begin{bmatrix} \Delta I_{a2} \\ \Delta I_{b2} \\ \Delta I_{c2} \end{bmatrix} = \begin{bmatrix} \Delta I_{a1} \\ \Delta I_{b1} \\ \Delta I_{c1} \end{bmatrix} + \begin{bmatrix} dI_{a1}/dt \\ dI_{b1}/dt \\ dI_{c1}/dt \end{bmatrix} \cdot (t_{mid} - t_{min})$$

Current Ripple Compensation

Sector	I _A	I _B	l _c
1	I _{DC2} -ΔI _{a2}	-(l _A +l _C)	-I _{DC1} -ΔI _{c1}
2	-(I _B +I _C)	I _{DC2} -ΔI _{b2}	-I _{DC1} -ΔI _{c1}
3	-I _{DC1} -ΔI _{a1}	I _{DC2} -ΔI _{b2}	-(I _A +I _B)
4	-I _{DC1} -ΔI _{a1}	-(I _A +I _C)	I_{DC2} - ΔI_{c2}
5	-(I _B +I _C)	-I _{DC1} -ΔI _{b1}	I_{DC2} - ΔI_{c2}
6	I _{DC2} -ΔI _{a2}	-I _{DC1} -ΔI _{b1}	-(I _A +I _B)

Software Implementation

Implemented solution makes use of the following resources

- 5 A/D channels (1x dummy, 2x phase currents, 1x DC voltage, 1x DC current)
- 4 EPWMs (3x phase voltages, 1x ADC synchronisation for DC-Link current sampling)
- 1 interrupt on EPWM CNT=ZRO

(processing complete FOC control algorithm with DC-Link current reconstruction)

,MainISR' called on EPWM CNT=ZRO Equal time base for all PWMs

EPWM1-4 in up-down count mode PWM signal set on CMPA match PWM signal clear on CMPB match

EPWM4 SOCB on CMPB match \Rightarrow Sample1

EPWM4 SOCA on CMPA match

 \Rightarrow Sample2

Software

Use of already existing project within Control Suite v2.2.1

Software

New modules written as macros

- DC-Link current reconstruction
- ADC configuration for DC-Link f2803xdclink_ileg_vdc_PM.h
- PWM configuration for DC-Link
- Current offset calculation

f2803xdclink_PM.h

f2803xdclink_pwm_PM.h f2803xdclink_calc_offset_PM.h

Additional files

- Linker comm
- Module doc

🖂 🚞 DC_LINK

F28035_DCLINK_FLASH.cmd F28035xdclink_calc_offset_PM.h F28035xdclink_ileg_vdc_PM.h

f28035xdclink_PM.h

] f28035xdclink_pwm_PM.h

□ □ ~Docs
Docs
Delink.pdf
NK_FLASH.cmd
Delink_calc_offset.pdf
Delink_ileg_vdc.pdf
Delink_pwm.pdf

Module integration in existing PM_Sensorless project

- Import and include module header files and linker command file
- Declare and define module objects
- Insert and replace original PWM and ADC initialization macros
- Insert and replace module function calls

A detailed step-by-step description for DC-Link modules integration can be found in the DC-Link module folder.

Practical Measurement Results

Used hardware

- DRV8312-C2-KIT (F28035) [4]
- Anaheim Automation BLY172S-24V-4000

Practical Measurement Results

No PWM Compensation vs. PWM Duty Cycle Compensation

---- I_A (directly measured in phase A leg of stage inverter) ---- I_A (reconstructed from DC-Link current measurement)

Parameters: SpeedRef = 0.3; Iq=0.1; no load

Practical Measurement Results

ewhe Dury pycle Coppensasiation vs. PWM Phase Shift Compensation

---- I_A (directly measured in phase A leg of stage inverter)

---- I_A (reconstructed from DC-Link current measurement)

--- difference in result when using Current Ripple Compensation

Parameters: SpeedRef = 0.3; Iq=0.1; no load

Summary

Following subjects were achieved

- TI MCUs for Motor Control Application
 - MSP430(Low power), Stellaris(32-bit ARM), C2000(DSP) ,Hercules(Safety)
- TI DSP based C2000 series for Motor Control Application
- Current reconstruction algorithm with 6 different options
 - No PWM compensation with/without current ripple compensation
 - PWM Duty Cycle compensation with/without current ripple compensation
 - PWM Phase Shift compensation with/without current ripple compensation
- Software modules written as macros for Piccolo
- Successfully tested on DRV8312-C2-KIT (F28035) with sensorless FOC of PMSM

References

- [1] Digital Control Systems (DCS) Group (2001). Digital Motor Control Software Library. SPRU485A.
- [2] Texas Instruments Europe (1998). Three Phase Current Measurements Using a Single Line Resistor on TMS320F240. *BPRA077*.
- [3] Darko P. Marceti'c and Evgenije M. Adži'c (2009). Improved Three-Phase Current Reconstruction for Induction Motor Drives With DC-Link Shunt. *IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 7.*
- [4] Texas Instruments. Three Phase BLDC Motor Kit with DRV8312 and Piccolo MCU. <u>http://focus.ti.com/docs/toolsw/folders/print/drv8312-c2-kit.html</u> (07/26/2011).
- [5] Texas Instruments. ControlSUITE for C2000.

http://processors.wiki.ti.com/index.php/ControlSUITE_for_C2000 (07/26/2011).

BACK UP

Software Implementation

Implemented solution makes use of the following resources

- 5 A/D channels (1x dummy, 2x phase currents, 1x DC voltage, 1x DC current)
- 4 EPWMs (3x phase voltages, 1x ADC synchronisation for DC-Link current sampling)
- 1 interrupt on EPWM CNT=ZRO

(processing complete FOC control algorithm with DC-Link current reconstruction)

,MainISR⁴ called on EPWM CNT=ZRO Equal time base for all PWMs

EPWM1-4 in up-down count mode PWM signal set on CMPA match PWM signal clear on CMPB match

EPWM4 SOCB on CMPB match \Rightarrow Sample1

EPWM4 SOCA on CMPA match

 \Rightarrow Sample2

Software

Current reconstruction routine

Sector	I _A	I _B	I _c
1	I _{DC2} -∆I _{a2}	-(I _A +I _C)	-I _{DC1} -ΔI _{c1}
2	-(I _B +I _C)	I _{DC2} -ΔI _{b2}	-I _{DC1} -ΔI _{c1}
3	-I _{DC1} -ΔI _{a1}	I _{DC2} -ΔI _{b2}	-(I _A +I _B)
4	-I _{DC1} -ΔI _{a1}	-(I _A +I _C)	$I_{DC2}-\Delta I_{c2}$
5	-(I _B +I _C)	-I _{DC1} -ΔI _{b1}	I_{DC2} - ΔI_{c2}
6	I _{DC2} -ΔI _{a2}	-I _{DC1} -ΔI _{b1}	-(I _A +I _B)

Software

C: **C**onducting Transistor (1)

NC: Non-Conducting Transistor (0)

