LM3447: Performance Analysis (43 EVM Production Samples)

Lighting Power Products Longmont Design Center
\square

Design Example: LM3447-A19-230VEVM (Online: http://www.ti.com/tool/Im3447-a19-230vevm)

TI Information - Selective Disclosure

	Typ	Units
Input Voltage	230	$\mathrm{~V}_{\text {RMS }}$
Output Voltage	30	V
LED Current	275	mA
Output Power	8.25	W
Input Power	10.1	W
Efficiency	82	$\%$
Power Factor	0.95	

- EVM production lot $=150$
- Sampled size = 43
- Random sampling
- LM3447MT - Tape \& Reel
- Xfmr - 750815047 Wurth Electronics China

Schematic: LM3447-A19-230VEVM

LM3447: Theoretical Analysis (1)

$$
P_{I N}=\frac{\pi}{4} \frac{G_{F F}^{2} V_{R E F}^{2}}{L_{M} f_{S}}\left(\frac{R_{A C}}{R_{F F}}\right)^{2}
$$

- $P_{\text {IN }}$ - Input power
- L_{M} - Primary side magnetizing inductance
- f_{s} - Switching frequency
- $G_{F F}$ - Internal gain
- $V_{\text {REF }}$ - Internal reference
- $R_{A C}-A C$ sense resistor (R4)
- $R_{F F}-$ Feedforward resistor (R13)
- Input power is function of external components
- Impact of magnetizing inductance: L_{M}
- Inversely proportionality
- Manufacturing spec < $\pm 10 \%$
- Based on air-gap tolerance (independent of Ferrite material)
- External resistors (ratio)
$-R_{A C} \& R_{F F}$ with $\pm 1 \%$ tolerance
- Internal IC parameters trimmed and tested to industry standards

Input Power Variation (Production Run)

- Estimating board-to-board variations

Histogram

Bin at $230 \mathrm{~V}_{\mathrm{RMS}}, 50 \mathrm{~Hz}$ operating point

- Sample size = 43 boards
- Mean input power $=10.1 \mathrm{~W}$
- Std. Dev. (1 sigma) $=221 \mathrm{~mW}$
- 3 sigma variation $= \pm 6.6 \%$

LED Current Variation

- Estimating board-to-board variations at $230 \mathrm{~V}_{\text {RMS }}, 50 \mathrm{~Hz}$ operating point
- LED Load = 10 Rebel LEDs
- Sample size = 43 boards
- Mean LED current $=284 \mathrm{~mA}$
- Std. Dev. (1 sigma) $=5.86 \mathrm{~mA}$
- 3 sigma variation= $\pm 6.19 \%$
- LED current range depends on magnetizing inductance variation

Input Power vs. Input Voltage (210V to 260V)

- Input power range for sample size of 43 boards ($210 \mathrm{~V}_{\text {RMs }}$ to $260 \mathrm{~V}_{\text {RMS }}$)
$-\quad$ Min $=9.44 \mathrm{~W}(-5.7 \%)$
- $\mathrm{Max}=10.45 \mathrm{~W}$ (+4.4\%)
- Average $=10.01 \mathrm{~W}$
- Input power deviation at any given voltage $< \pm 7.5 \%$ (3 sigma)

TI Information - Selective Disclosure
\square

Input Power vs. Input Voltage: Extended Range (180V to 260V)

LED Current vs. Input Voltage

- LED current range for sample size of 43 boards ($210 \mathrm{~V}_{\text {RMS }}$ to $260 \mathrm{~V}_{\text {RMS }}$)
$-\mathrm{Min}=265.7 \mathrm{~mA}(-5.74 \%)$
- Max $=293.5 \mathrm{~mA}(+4.12 \%)$
- Average $=282 \mathrm{~mA}$
- LED current deviation at any given voltage $< \pm 7 \%$ (3 sigma)

TI Information - Selective Disclosure
\square

LED Current vs. Input Voltage: Extended Range (180V to 260V)

Power Factor vs. Input Voltage

Summary

- Input power and LED current dependent on
- Magnetizing inductance (L_{M})
- External resistors ($\mathrm{R}_{\mathrm{AC}}, \mathrm{R}_{\mathrm{FF}}$)
- Internal IC parameters ($\left.\mathrm{G}_{\mathrm{FF}}, \mathrm{V}_{\mathrm{REF}}, \mathrm{f}_{\mathrm{S}}\right)^{*}$
- Theoretical analysis can be performed based on mathematical relation derived DCM Flyback PFC converter
- Experimental analysis performed for LM3447-A19-230VEVM using a sample size of 43 boards and 10 series connected Luxeon Rebel LED load board
- Input power variation at $230 \mathrm{~V}_{\text {RMS }}, 50 \mathrm{~Hz}= \pm 6.6 \%$ (3 sigma)
- LED current variation at $230 \mathrm{~V}_{\text {RMS }}, 50 \mathrm{~Hz}= \pm 6.19 \%$ (3 sigma)
- Input power variation at any voltage between $210-260 \mathrm{~V}< \pm 7.5 \%$ (3 sigma)
- LED current variation at any voltage between $210-260 \mathrm{~V}< \pm 7 \%$ (3 sigma)
- Input power variation is within the desired specification over input range (3 sigma)
- LED current variation is close to the desired specification over input range (3 sigma)
- Expecting lower luminous flux variation over different LED bins, operating temperature and life time using power regulation approach
- Improved LED current matching can be achieved by reducing magnetizing inductance variation during manufacturing

Discussion: Comparing Power Regulation with Current Regulation Control

 Constant Power Operation

- Measured experimental data for 18 CREE MC-E LEDs
- Constant current (350 mA) operation
- Maximum luminous flux difference of 8.5%
- Constant power (4 W) operation
- Maximum luminous flux difference of 6.7%
- Power regulation approach is suggested to be better than current regulation when considering LED manufacturing variations

Delivering MORE Together

