

# High Speed Amplifiers Selection Tree

#### Voltage Feedback

#### Low power IQ≤5mA

OPA2835 56MHz; 1-,2-ch OPA2889 115MHz; 2-ch LMH6618 140MHz; 1-, 2-ch LM6171 160MHz; 1-,2-ch THS4081 175MHz; 1-,2-ch OPA2836 205MHz; 1-, 2-ch OPA890 260MHz; 1-,2-ch

#### Low noise $Vn \le 2nV/\sqrt{Hz}$

THS4031100MHz; 1-,2-ch THS4021350MHz; 1-,2-ch OPA843 500MHz; 1-ch OPA846 (G>7V/V) 500MHz; 1-ch OPA847 (G>12V/V) 600MHz; 1-ch LMH6629 900 MHz; 1-ch

#### High slew rate >1000V/µs

THS4271 390MHz; 1-ch OPA698 450MHz; 1-ch OPA690 500MHz; 1-ch LMH6609 900MHz; 1-ch LMH6629 900MHz; 1-ch

#### High voltage 30V

THS4031 100MHz; 1-,2-ch LM6171 160MHz; 1-,2-ch THS4081 175MHz; 1-,2-ch THS4061 180MHz; 1-,2-ch LM7121 235MHz; 1-ch THS4021 350MHz; 1-,2-ch

#### Current Feedback

Low power IQ≤5mA OPA683 200MHz; 1-, 2-ch OPA684 210MHz; 1-,2-,3-,4-ch OPA691 280MHz; 1-,2-,3-ch LMH6723 370MHz; 1-ch

#### Low noise Vn≤2nV/√Hz

**0PA691** 280MHz; 1-,2-,3-ch **LMH6714** 400MHz; 1-,2-ch **THS3001** 420MHz; 1-ch **0PA695** 1700MHz; 1-,2-,3-ch **LMH6702** 1700MHz; 1-ch **THS3201** 1800MHz; 1-ch

#### High slew rate >1000V/µs

THS3091 235MHz; 1-ch 0PA691 280MHz; 1-,2-,3-ch 0PA694 1500MHz; 1-,2-ch 0PA695 1700MHz; 1,2,3-ch THS3201 1800MHz; 1-ch

#### **High voltage 30V**

LM6181 100MHz, 1-ch THS3091 235MHz; 1-ch THS3061 300MHz; 1-,2-ch THS3001 420MHz; 1-ch

#### Rail-to-Rail

Low power IQ≤5mA OPA835 56MHz; 1-,2-ch THS4281 95MHz; 1-ch LMH6642 130MHz; 1-ch LMH6618 140MHZ; 1-,2-ch OPA836 205MHz; 1-,2-ch OPA830 310MHz; 1,2,4-ch

## High slew rate >900V/µs

THS4221 230MHz; 1-ch

#### Voltage Limiting Amps

**0PA699** 260MHz; 1-ch **0PA698** (G>4V/V) 450MHz; 1-ch **LMH6553** 900MHz; 1-ch

#### JFET

#### **Unity Gain Stable**

LMH6601 250MHz; 1-ch 0PA656 500MHz; 1-ch 0PA659 650MHz; 1-ch

#### Low noise Vn≤6nV/√Hz

THS4601 180MHz; 1-ch 0PA657 (G>7V/V) 350MHz; 1-ch

#### High slew rate ≥2000V/µs

**OPA653** 500MHz; 1-ch **OPA659** 650MHz; 1-ch

#### **High voltage 30V**

**THS4601** 180MHz; 1-ch **THS4631** 325MHz; 1-ch

**Selection Tree** 

#### **Fully Differential**

Low power IQ≤5mA THS4531 36MHz; 1-ch THS4521 145MHz; 1-,2-,4-ch

#### Low noise $Vn \le 2nV/\sqrt{Hz}$

THS4131 150MHz; 1-ch THS4511 1600MHz; 1-ch THS4509 2000MHz; 1-ch THS770006 2400MHz; 1-ch LMH6554 2800MHz; 1-ch

#### High slew rate >2000V/µs

THS4511 1600MHz; 1-ch THS4509 2000MHz; 1-ch THS770006 2400MHz; 1-ch LMH6554 2800MHz; 1-ch

#### High voltage

THS4131 150MHz; 1-ch

#### Variable Gain Amps

VCA820 150MHz; 1-ch PGA870 650MHz; 1-ch VCA821 710MHz; 1-ch LMH6517 1200MHz, 2-ch LMH6521 1200MHz; 2-ch LMH6522 1400MHz; 4-ch

**Programmable Diff Amps** 

LMH6881/2 1600MHz; 1-,2-ch

## Video Filter Amplifiers

# SD

**OPA360** 1-ch SD **THS7314** 3-ch SD **THS7374** 4-ch SD THS7310 2-ch SD

#### HD

THS7316 3-ch HD THS7373 1-ch SD+3-ch HD THS7365 3-ch SD+3-ch HD THS7371 1-ch SD+3-ch HD THS7372 1-ch SD+3-ch HD

#### **Full HD**

THS7364 3-ch SD+3-ch SD/ED/HD/Full HD THS7368 3-ch SD+3-ch SD/ED/HD/Full HD

#### High gain >4V/V

THS7360 3-ch SD+3-ch SD/ED/HD/Full HD THS7315 3-ch SD THS7375 4-ch SD THS7320 3-ch ED

#### Low power IQ≤4mA

THS7319 3-ch ED THS7318 3-ch ED/SD

#### Projector

THS7327 3-ch RGBHV THS7347 3-ch RGBHV

#### DSL/Power Line

#### Low power IQ<10mA

THS6184 (±2V) 50MHz; 4-ch THS6226 (+12V) 125MHz; 2-ch OPA2684 (±6V) 210MHz; 2-ch OPA2613 (±6V) 230MHz; 2-ch

#### Low noise Vn≤3nV/√Hz

THS6204 150MHz, 2-ch 0PA2613 230MHz; 2-ch 0PA2674 250MHz; 2-ch 0PA2822 400MHz; 2-ch

#### High current drive IO>500mA

THS6132 80MHz, 2-ch THS6182 100MHz; 2-ch OPA2674 250MHz; 2-ch OPA2670 420MHz; 2-ch OPA2673 600MHz; 2-ch

#### **Buffers/Comparators**

#### **Buffers**

LMH6321 110MHz; 1-ch; open loop LMH6559 1750MHz; 1-ch; closed loop

#### **Comparators**

LMH7322/24 700ps Tprop; 2-,4-ch LMH7220 2.9ns Tprop; 1-ch LMV7219 7ns Tprop; 1-ch

# High Speed Amplifiers Data Acquisition: Receive Signal Chain

#### END EQUIPMENTS: Oscilloscope, Data Acquisition Cards, Digitizers, Portable Instruments



## **Input Amplifiers**

| High Z FET Input Amp |               |           |                    |                     |                         |                  |                                                                                             |  |  |
|----------------------|---------------|-----------|--------------------|---------------------|-------------------------|------------------|---------------------------------------------------------------------------------------------|--|--|
| Device               | Supply (V)    | IS (mA)   | Bandwidth<br>(MHz) | Slew Rate<br>(V/µs) | Input Noise<br>(nV/√Hz) | Distortion (dBc) | Features                                                                                    |  |  |
| LMH6601              | 2.4 to 5.5    | 9.6       | 250                | 275                 | 7                       | -61 (10MHz)      | Single supply 2.4 V MOSFET, 250 MHz for video                                               |  |  |
| THS4631              | 30            | 11.5      | 325                | 900                 | 7                       | -76 (5MHz)       | Fast slew rate, high voltage                                                                |  |  |
| OPA656               | 10            | 16        | 500                | 290                 | 7                       | –74 (5MHz)       | Ultra high dynamic range                                                                    |  |  |
| OPA659               | 12            | 33.5      | 575                | 2550                | 8.9                     | –78 (10MHz)      | Ultra high dynamic range for high impedance buffering                                       |  |  |
| Low Noise Amp        |               |           |                    |                     |                         |                  |                                                                                             |  |  |
| THS4021              | 30            | 11        | 350                | 470                 | 1.5                     | –77 (1MHz)       | High linearity, exceptional performance at high gain ${\geq}10$                             |  |  |
| 0PA847               | 10            | 18.9      | 600                | 3900                | 0.85                    | -105 (5MHz)      | Very low distortion, stable down to gains as low as 12 $\rm V$                              |  |  |
| LMH6629              | 2.7 to 5.5    | 18.2      | 900                | 1600                | 0.69                    | –90 (1MHz)       | Industry's lowest noise, low distortion, ultra high speed                                   |  |  |
| Variable G           | ain Amp       |           |                    |                     |                         |                  |                                                                                             |  |  |
| VCA820               | 10            | 34        | 150                | 1700                | 8.2                     | >40dB            | Large gain adjust range and precision, minimized harmonic distortion                        |  |  |
| LMH6505              | 10            | 16        | 150                | 1500                | 4.4                     | >40dB            | Wideband, low power, linear in dB                                                           |  |  |
| VCA821               | 10            | 34        | 710                | 2500                | 6                       | >40dB            | Wide bandwidth, high flexibility                                                            |  |  |
| Programm             | nable Differe | ntial Amp |                    |                     |                         |                  |                                                                                             |  |  |
| LMH6881              | 5             | 100       | 2400               | _                   | 9.7 dB NF               | –65 (200MHz)     | Programmable gain, excellent noise figure and distortion performance over entire gain range |  |  |
| LMH6882              | 5             | 200       | 2400               |                     | 9.7 dB NF               | –65 (200MHz)     | Dual, programmable gain, accurate channel-channel gain/phase matching                       |  |  |

# High Speed Amplifiers Data Acquisition: Receive Signal Chain

# **Signal Conditioning Amplifiers**

| General Purpose |             |         |                    |                     |                         |                      |                                                                                         |  |  |
|-----------------|-------------|---------|--------------------|---------------------|-------------------------|----------------------|-----------------------------------------------------------------------------------------|--|--|
| Device          | Supply (V)  | IS (mA) | Bandwidth<br>(MHz) | Slew Rate<br>(V/µs) | Input Noise<br>(nV/√Hz) | Distortion (dBc)     | Features                                                                                |  |  |
| LM7121          | 4.5 to 11   | 5.3     | 50                 | 1300                | 17                      | -64 (1MHz)           | Unlimited cap load in SOT23                                                             |  |  |
| THS4031         | 30          | 11      | 100                | 100                 | 1.6                     | –96 (1MHz)           | Ultra low noise and distortion, great for buffering SE A/D converters                   |  |  |
| OPA695          | 10          | 12.9    | 1400               | 4300                | 1.8                     | -78 (10MHz)          | Exceptional slew rate and noise performance                                             |  |  |
| THS4271         | 15          | 28      | 1400               | 1000                | 3.0                     | -92 (30MHz)          | Low noise and distortion, high slew rate, and unity gain stability                      |  |  |
| LMH6702         | 10          | 12.5    | 1700               | 3100                | 1.8                     | -63 (60MHz)          | Ultra low noise distortion, wideband CFB                                                |  |  |
| THS4304         | 5           | 18      | 3000               | 830                 | 2.4                     | -95 (10MHz)          | Good DC accuracy, high dynamic range                                                    |  |  |
| Special Funct   | tion        |         |                    |                     |                         |                      |                                                                                         |  |  |
| OPA861          | 10          | 5.4     | 80                 | 900                 | 2.4                     | –57 (5MHz)           | Low power, wideband transconductance amp                                                |  |  |
| LMH6732         | 10          | 11.7    | 110                | 1800                | 2.8                     | –105 (5MHz)          | Exceptional performance over adjustable supply current, fast enable/<br>disable feature |  |  |
| LMH6321         | 15          | 16.5    | 110                | 2900                | 2.8                     | –68 (1MHz)           | Adjustable current limit, high capacitance load drive                                   |  |  |
| BUF602          | 10          | 5.8     | 1000               | 8000                | 4.8                     | -76 (5MHz)           | Wide bandwidth, high slew rate unity gain buffer                                        |  |  |
| Low Power       |             |         |                    |                     |                         |                      |                                                                                         |  |  |
| Device          | Supply (V)  | IS (mA) | Bandwidth<br>(MHz) | Slew Rate<br>(V/µs) | Input Noise<br>(nV/√Hz) | Features             |                                                                                         |  |  |
| OPA835          | 2.5 to 5.5  | 0.25    | 56                 | 160                 | 9.3                     | Unprecedented dy     | namic performance to power ratio, rail-to-rail O/P                                      |  |  |
| THS4281         | 15          | 0.75    | 90                 | 35                  | 12.5                    | Very low power, u    | nity gain VFB, RRIO                                                                     |  |  |
| LMH6642/3/4     | 2.7 to 12.8 | 2.7     | 130                | 130                 | 17                      | Low power, high o    | utput current, low distortion                                                           |  |  |
| OPA836          | 2.5 to 5.5  | 1       | 205                | 560                 | 4.6                     | Excellent dynamic    | performance to power ratio, rail-to-rail O/P                                            |  |  |
| OPA684          | 10          | 1.7     | 210                | 820                 | 3.7                     | Super high perform   | nance, low power, wideband CFB, 100V/V gain with 80MHz BW                               |  |  |
| Voltage Limit   | ing         |         |                    |                     |                         |                      |                                                                                         |  |  |
| OPA698          | 10          | 16.6    | 250                | 1100                | 5.6                     | Best voltage limiti  | ng function with fast recovery, unity gain stable VFB                                   |  |  |
| LMH6553         | 4.5 to 12   | 37      | 900                | 2300                | 1.2                     | Fully differential a | mplifier and limiting function with very fast recovery time                             |  |  |
| OPA699          | 10          | 16.6    | 1000               | 1400                | 4.1                     | Best voltage limiti  | ng function with fast recovery, min gain = $6 \text{ V/V}$                              |  |  |

#### **ADC Drivers**

| High-Performance Pipeline ADC Drivers |            |          |                    |                     |                         |                  |                                                                                             |  |  |
|---------------------------------------|------------|----------|--------------------|---------------------|-------------------------|------------------|---------------------------------------------------------------------------------------------|--|--|
| Device                                | Supply (V) | IS (mA)  | Bandwidth<br>(MHz) | Slew Rate<br>(V/µs) | Input Noise<br>(nV/√Hz) | Distortion (dBc) | Features                                                                                    |  |  |
| PGA870                                | 5          | 143      | 650                | 2900                | 13dB NF                 | -108 (50MHz)     | High bandwidth, low distortion, low noise 14 bit ADC driver                                 |  |  |
| THS770012                             | 5          | 115      | 900                | 3300                | 1.3                     | –90 (10MHz)      | 10 to 13dB selectable gain, 14/16 bit ADC driver                                            |  |  |
| LMH6521                               | 5          | 245      | 1200               | —                   | 7.3dB NF                | –84 (200MHz)     | Excellent high frequency distortion, accurate channel-channel gain/phase matching           |  |  |
| LMH6522                               | 5          | 121.25   | 1400               | —                   | 8.5dB NF                | -88 (100MHz)     | Excellent distortion, accurate channel-channel gain/phase matching                          |  |  |
| THS4509                               | 5          | 37.7     | 1900               | 6600                | 1.9                     | -75 (100MHz)     | Wideband, low noise, low distortion                                                         |  |  |
| LMH6882                               | 5          | 200      | 2400               | _                   | 9.7 dB NF               | -65 (200MHz)     | Dual, programmable gain, accurate channel-channel gain/phase matching                       |  |  |
| LMH6881                               | 5          | 100      | 2400               | —                   | 9.7 dB NF               | –65 (200MHz)     | Programmable gain, excellent noise figure and distortion performance over entire gain range |  |  |
| LMH6554                               | 5          | 60       | 2800               | 6200                | 0.9                     | –96 (75MHz)      | High accuracy over wideband, low distortion, low noise                                      |  |  |
| Low-Power                             | Delta-Sigm | a/SAR AD | C Drivers          |                     |                         |                  |                                                                                             |  |  |
| OPA2835                               | 2.5 to 5.5 | 0.25     | 56                 | 160                 | 9.3                     | –133 (10kHz)     | Unprecedented dynamic performance to power ratio, rail-to-rail O/P                          |  |  |
| THS4521                               | 3 to 5     | 1.1      | 145                | 490                 | 4.6                     | –133 (10kHz)     | Fully differential architecture, very low power rail-to-rail O/P                            |  |  |
| THS4131                               | 30         | 16       | 150                | 51                  | 1.3                     | -100 (250kHz)    | Ultra low noise with excellent harmonic distortion                                          |  |  |

# High Speed Amplifiers Communications



# Wireless Signal Conditioning Amplifiers/IF

| RF/IF Amplifiers |            |         |                    |                     |                         |                  |                                                                                             |  |  |
|------------------|------------|---------|--------------------|---------------------|-------------------------|------------------|---------------------------------------------------------------------------------------------|--|--|
| Device           | Supply (V) | IS (mA) | Bandwidth<br>(MHz) | OIP3<br>(dBm)       | Noise Figure<br>(dB)    | Gain (dB)        | Features                                                                                    |  |  |
| THS9000/1        | 3 to 5     | 100     | 50 - 400           | 36                  | 4.5                     | 16               | Cascadable amplifier optimized for high IF frequency                                        |  |  |
| ADC Drivers      |            |         |                    |                     |                         |                  |                                                                                             |  |  |
| Device           | Supply (V) | IS (mA) | Bandwidth<br>(MHz) | Slew Rate<br>(V/µs) | Input Noise<br>(nV/√Hz) | Distortion (dBc) | Features                                                                                    |  |  |
| PGA870           | 5          | 143     | 650                | 2900                | 13dB NF                 | -108 (50MHz)     | High bandwidth, low distortion, low noise 14 bit ADC driver                                 |  |  |
| THS770012        | 5          | 115     | 900                | 3300                | 1.3                     | –90 (10MHz)      | 10 to 13dB selectable gain, 14/16 bit ADC driver                                            |  |  |
| LMH6521          | 5          | 122.5   | 1200               | 48.5                | 7.3dB NF                | -84 (200MHz)     | Excellent distortion, accurate channel-channel gain/phase matching                          |  |  |
| LMH6522          | 5          | 121.25  | 1400               | 49                  | 8.5dB NF                | -88 (100MHz)     | Excellent distortion, accurate channel-channel gain/phase matching                          |  |  |
| THS4511          | 5          | 39.2    | 1600               | 4900                | 2.0                     | -72 (70MHz)      | Exceptional slew rate and distortion performance                                            |  |  |
| THS4509          | 5          | 37.7    | 1900               | 6600                | 1.9                     | -75 (100MHz)     | Wideband, low noise, low distortion                                                         |  |  |
| THS770006        | 5          | 115     | 2400               | 3100                | 1.7                     | –87 (10MHz)      | +6dB fixed gain, high linearity 14/16 bit ADC driver                                        |  |  |
| LMH6881          | 5          | 100     | 2400               | _                   | 9.7 dB NF               | -65 (200MHz)     | Programmable gain, excellent noise figure and distortion performance over entire gain range |  |  |
| LMH6882          | 5          | 200     | 2400               | _                   | 9.7 dB NF               | -65 (200MHz)     | Dual, programmable gain, accurate channel-channel gain/phase matching                       |  |  |



## Wired DSL/Power Line Drivers

| Class AB  |            |              |                    |                     |                         |                                                   |                                                                                                        |  |  |
|-----------|------------|--------------|--------------------|---------------------|-------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|
| Device    | Supply (V) | IOUT<br>(mA) | Bandwidth<br>(MHz) | Slew Rate<br>(V/µs) | Input Noise<br>(nV/√Hz) | Distortion (dBc)                                  | Features                                                                                               |  |  |
| THS6204   | 24         | 416          | 150                | 3800                | 2.5                     | 70dB MTPR with<br>+20.5dBm G.993.2—<br>Profile 8b | Fully differential architecture, minimal quiescent current with high linearity                         |  |  |
| OPA2670   | 12         | 700          | 420                | 5000                | 6.3                     | -71 (10MHz)                                       | Fully differential architecture, excellent drive capability combined with low distortion               |  |  |
| Class G/H |            |              |                    |                     |                         |                                                   |                                                                                                        |  |  |
| THS6132   | ±5 to ±15  | 500          | 80                 | 300                 | 3.5                     | –74 MTPR                                          | High efficiency class G ADSL line driver, low power                                                    |  |  |
| THS6226   | 12         | 383          | 125                | 1500                | 6.3                     | 70dB with +19.8dBm<br>G.993.2—Profile 8b          | Industry's first class H VDSL driver, single solution covering all DSL profiles, low power consumption |  |  |
| PLC       |            |              |                    |                     |                         |                                                   |                                                                                                        |  |  |
| OPA2674   | 12         | 500          | 250                | 2000                | 2                       | -82 (5MHz)                                        | Excellent noise performance with drive current of 500mA                                                |  |  |
| OPA2673   | 12         | 700          | 600                | 3000                | 2.4                     | -80 (10MHz)                                       | Drive capability of 700mA combined with low noise and low distortion                                   |  |  |

**Selection Tree** 



END EQUIPMENTS: Function Generators, Arbitrary Waveform Generators, Signal Sources, ATE Pin Drivers

# Signal Conditioning Amplifiers

| General Purpose                                                                 |                                                              |                                                                |                                                      |                                                        |                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                |  |  |
|---------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Devices                                                                         | Supply (V)                                                   | IS (mA)                                                        | Bandwidth<br>(MHz)                                   | Slew Rate<br>(V/µs)                                    | Input Noise<br>(nV/√Hz)                                                              | Distortion (dBc)                                                                                                                                 | Features                                                                                                                                                                                                                                       |  |  |
| THS4031                                                                         | 30                                                           | 11                                                             | 100                                                  | 100                                                    | 1.6                                                                                  | 96 (1MHz)                                                                                                                                        | Wide O/P swing, great for buffering A/D converters                                                                                                                                                                                             |  |  |
| THS4021                                                                         | 30                                                           | 11                                                             | 350                                                  | 470                                                    | 1.5                                                                                  | –77 (1MHz)                                                                                                                                       | High linearity, exceptional performance at high gain $\geq 10$                                                                                                                                                                                 |  |  |
| OPA695                                                                          | 10                                                           | 12.9                                                           | 1400                                                 | 4300                                                   | 1.8                                                                                  | –78 (10MHz)                                                                                                                                      | Exceptional slew rate and noise performance                                                                                                                                                                                                    |  |  |
| THS4271                                                                         | 15                                                           | 28                                                             | 1400                                                 | 1000                                                   | 3.0                                                                                  | –92 (30MHz)                                                                                                                                      | Unmatched combination of low-noise, high slew rate, wide bandwidth, low distortion, and unity gain stability                                                                                                                                   |  |  |
| THS4304                                                                         | 5                                                            | 18                                                             | 3000                                                 | 830                                                    | 2.4                                                                                  | -95 (10MHz) Excellent DC accuracy, high dynamic range                                                                                            |                                                                                                                                                                                                                                                |  |  |
| Low Power                                                                       |                                                              |                                                                |                                                      |                                                        |                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                |  |  |
|                                                                                 |                                                              |                                                                |                                                      |                                                        |                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                |  |  |
| Devices                                                                         | Supply (V)                                                   | IS (mA)                                                        | Bandwidth<br>(MHz)                                   | Slew Rate<br>(V/µs)                                    | Input Noise<br>(nV/√Hz)                                                              | Features                                                                                                                                         |                                                                                                                                                                                                                                                |  |  |
| Devices<br>OPA835/2835                                                          | <b>Supply (V)</b><br>2.5 to 5.5                              | <b>IS (mA)</b><br>0.25                                         | Bandwidth<br>(MHz)<br>56                             | Slew Rate<br>(V/µs)<br>160                             | Input Noise<br>(nV/√Hz)<br>9.3                                                       | Features<br>Unprecedented dyn                                                                                                                    | namic performance to power ratio                                                                                                                                                                                                               |  |  |
| Devices<br>0PA835/2835<br>THS4281                                               | <b>Supply (V)</b><br>2.5 to 5.5<br>15                        | <b>IS (mA)</b><br>0.25<br>0.75                                 | Bandwidth<br>(MHz)<br>56<br>90                       | Slew Rate<br>(V/μs)<br>160<br>35                       | Input Noise<br>(nV/√Hz)<br>9.3<br>12.5                                               | Features<br>Unprecedented dyn<br>Very low power, un                                                                                              | namic performance to power ratio<br>ity gain VFB, RRIO                                                                                                                                                                                         |  |  |
| Devices<br>0PA835/2835<br>THS4281<br>0PA2889                                    | <b>Supply (V)</b><br>2.5 to 5.5<br>15<br>10                  | <b>IS (mA)</b><br>0.25<br>0.75<br>0.46                         | Bandwidth<br>(MHz)<br>56<br>90<br>115                | Slew Rate<br>(V/μs)<br>160<br>35<br>250                | Input Noise<br>(nV/√Hz)<br>9.3<br>12.5<br>8.4                                        | Features<br>Unprecedented dyn<br>Very low power, un<br>Very low power cor                                                                        | namic performance to power ratio<br>ity gain VFB, RRIO<br>nbined with high dynamic range                                                                                                                                                       |  |  |
| Devices<br>0PA835/2835<br>THS4281<br>0PA2889<br>THS4521                         | Supply (V)   2.5 to 5.5   15   10   3 to 5                   | <b>IS (mA)</b><br>0.25<br>0.75<br>0.46<br>1.1                  | Bandwidth<br>(MHz)<br>56<br>90<br>115<br>145         | Slew Rate<br>(V/μs)   160   35   250   490             | Input Noise<br>(nV/√Hz)<br>9.3<br>12.5<br>8.4<br>4.6                                 | Features<br>Unprecedented dyn<br>Very low power, un<br>Very low power cor<br>Fully differential ard                                              | namic performance to power ratio<br>ity gain VFB, RRIO<br>nbined with high dynamic range<br>chitecture with rail-to-rail O/P SAR and delta-sigma ADC drivers                                                                                   |  |  |
| Devices<br>0PA835/2835<br>THS4281<br>0PA2889<br>THS4521<br>0PA836/2836          | Supply (V)   2.5 to 5.5   15   10   3 to 5   2.5 to 5.5      | <b>IS (mA)</b><br>0.25<br>0.75<br>0.46<br>1.1<br>1             | Bandwidth<br>(MHz)<br>56<br>90<br>115<br>145<br>205  | Slew Rate<br>(V/μs)   160   35   250   490   560       | <b>Input Noise</b><br>( <b>nV</b> /√ <b>Hz</b> )<br>9.3<br>12.5<br>8.4<br>4.6<br>4.6 | Features<br>Unprecedented dyn<br>Very low power, un<br>Very low power cor<br>Fully differential ard<br>Excellent dynamic                         | namic performance to power ratio<br>ity gain VFB, RRIO<br>nbined with high dynamic range<br>chitecture with rail-to-rail O/P SAR and delta-sigma ADC drivers<br>performance to power ratio, rail-to-rail O/P                                   |  |  |
| Devices   DPA835/2835   THS4281   OPA2889   THS4521   OPA836/2836   OPA836/2836 | Supply (V)   2.5 to 5.5   15   10   3 to 5   2.5 to 5.5   10 | <b>IS (mA)</b><br>0.25<br>0.75<br>0.46<br>1.1<br>1<br>1<br>1.7 | Bandwidth<br>(MHz)   56   90   115   145   205   210 | Slew Rate<br>(V/µs)   160   35   250   490   560   820 | Input Noise<br>(nV/√Hz)   9.3   12.5   8.4   4.6   4.6   3.7                         | Features<br>Unprecedented dyn<br>Very low power, un<br>Very low power cor<br>Fully differential ard<br>Excellent dynamic  <br>Super high perform | namic performance to power ratio<br>ity gain VFB, RRIO<br>nbined with high dynamic range<br>chitecture with rail-to-rail O/P SAR and delta-sigma ADC drivers<br>performance to power ratio, rail-to-rail O/P<br>nance, low power, wideband CFB |  |  |

## **High Voltage, High Current Drivers**

**High Voltage** Bandwidth **Slew Rate Input Noise** Distortion (dBc) Features **Devices** Supply (V) IS (mA) (nV/√Hz) (MHz) (V/µs) LM6181 30 10 100 2000 4 -50 (10MHz) Guaranteed BW and slew rate, low differential gain and phase error LM6171 30 4.5 160 3600 12 -66 (1MHz) Low supply current, high slew rate, low distortion THS3091 30 11 210 7300 2 -69 (10MHz) Low noise CFB with high O/P drive of 250mA Super fast slew rate combined with low distortion and O/P drive of 100mA THS3001 30 10 420 6500 1.6 -80 (10MHz) **High Current** LM7372 30 9.5 220 3000 14 -80 (1MHz) Output current of 150mA, high slew rate, greater dynamic range **OPA2674** 12 19.2 250 2000 2 -82 (5MHz) Excellent noise performance with drive of 500mA 30 420 **OPA2670** 12 5000 3.6 -71 (10MHz) High O/P current of 700mA **OPA2673** 12 32 600 3000 2.4 -80 (10MHz) Drive capability of 700mA combined with low noise and low distortion



### **Consumer Video**

| SD        |             |               |           |                                 |
|-----------|-------------|---------------|-----------|---------------------------------|
| Device    | Supply (V)  | Total IS (mA) | Gain (dB) | Number of Channels              |
| OPA360    | 2.5 to 3.6  | 6             | 6         | 1-ch SD                         |
| THS7314   | 2.85 to 5.5 | 16            | 6         | 3-ch SD                         |
| THS7374   | 2.85 to 5.5 | 10            | 6         | 4-ch SD                         |
| THS7310   | 2.6 to 5.5  | 12            | 6         | 2-ch SD                         |
| HD        |             |               |           |                                 |
| TH\$7316  | 2.85 to 5.5 | 18.3          | 6         | 3-ch HD                         |
| THS7373   | 2.6 to 5.5  | 16.2          | 6         | 1-ch SD + 3-ch HD               |
| THS7365   | 2.6 to 5.5  | 20.7          | 6         | 3-ch SD + 3-ch HD               |
| THS7371   | 2.85 to 5.5 | 20.5          | 6         | 1-ch SD + 3-ch HD               |
| THS7372   | 2.7 to 5.0  | 23.4          | 6         | 1-ch SD + 3-ch HD               |
| Full HD   |             |               |           |                                 |
| THS7364   | 2.7 to 5    | 23.4          | 6         | 3-ch SD + 3-ch FULL HD          |
| THS7368   | 2.6 to 5.5  | 23.4          | 6         | 3-ch SD + 3-ch SD/ED/HD/FULL HD |
| High Gain |             |               |           |                                 |
| THS7360   | 2.6 to 5.5  | 24.5          | 15, 13    | 3-ch SD + 3-ch SD/ED/HD/FULL HD |
| THS7375   | 2.85 to 5.5 | 14            | 15        | 4-ch SD                         |
| THS7315   | 2.85 to 5.5 | 15.6          | 14.3      | 3-ch SD                         |
| Low Power |             |               |           |                                 |
| TH\$7318  | 2.85 to 5.5 | 3.5           | 6         | 3-ch ED/SD                      |
| TH\$7319  | 2.85 to 5.5 | 3.4           | 6         | 3-ch ED                         |
| THS7320   | 2.6 to 5    | 3.5           | 12        | 3-ch ED                         |

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute TI's approval, warranty or endorsement thereof.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

| Products                     |                         | Applications                  |                                   |
|------------------------------|-------------------------|-------------------------------|-----------------------------------|
| Audio                        | www.ti.com/audio        | Automotive and Transportation | www.ti.com/automotive             |
| Amplifiers                   | amplifier.ti.com        | Communications and Telecom    | www.ti.com/communications         |
| Data Converters              | dataconverter.ti.com    | Computers and Peripherals     | www.ti.com/computers              |
| DLP® Products                | www.dlp.com             | Consumer Electronics          | www.ti.com/consumer-apps          |
| DSP                          | dsp.ti.com              | Energy and Lighting           | www.ti.com/energy                 |
| Clocks and Timers            | www.ti.com/clocks       | Industrial                    | www.ti.com/industrial             |
| Interface                    | interface.ti.com        | Medical                       | www.ti.com/medical                |
| Logic                        | logic.ti.com            | Security                      | www.ti.com/security               |
| Power Mgmt                   | power.ti.com            | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |
| Microcontrollers             | microcontroller.ti.com  | Video and Imaging             | www.ti.com/video                  |
| RFID                         | www.ti-rfid.com         |                               |                                   |
| OMAP Applications Processors | www.ti.com/omap         | TI E2E Community              | e2e.ti.com                        |
| Wireless Connectivity        | www.ti.com/wirelessconn | ectivity                      |                                   |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated