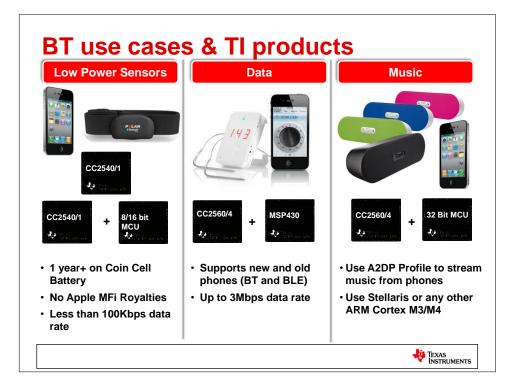
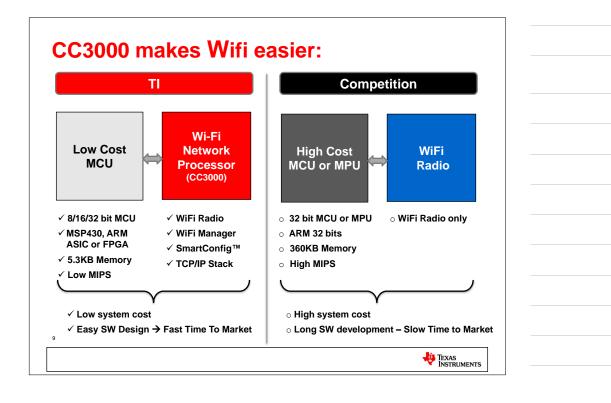

Introduction to Wireless Connectivity Solutions	
May, 2013	
Texas Instruments	

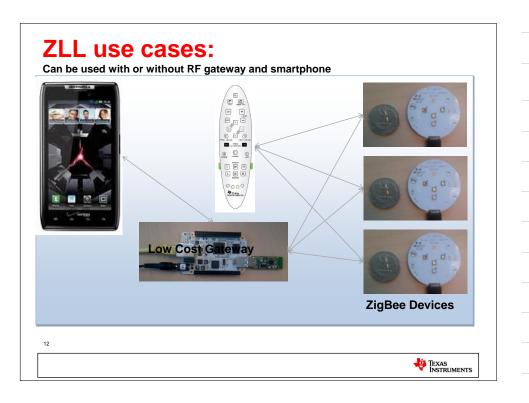
genda		
 Intro to WCS technologies 2013 technology & application focus Why is RF Performance important TI RF Performance Line RF Development Kit for China Sub1-GHz in China Demo 		
	TEXAS INSTRUMENTS	

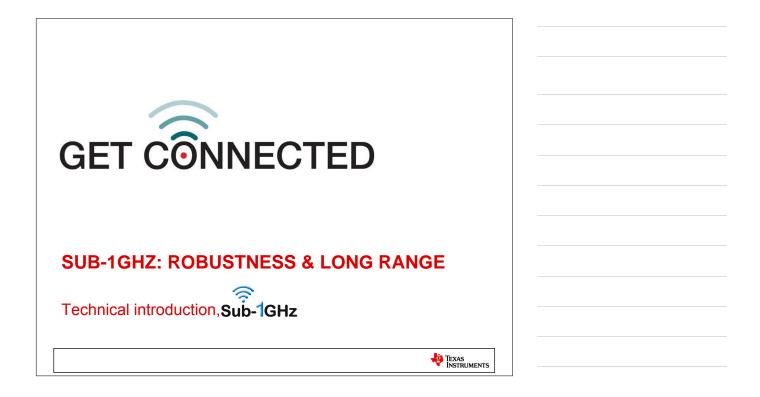


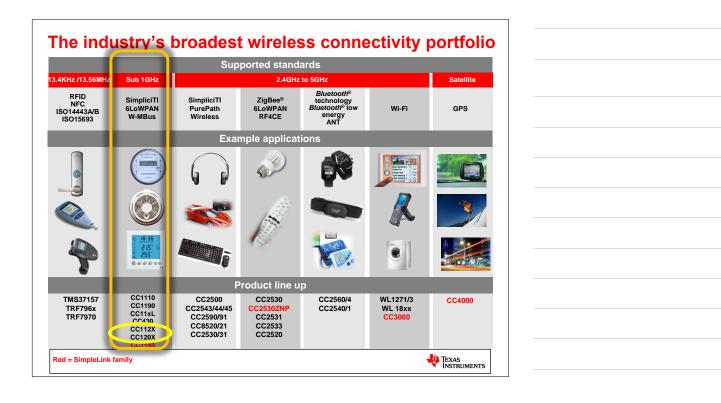

2013 Connectivity Focused EEs

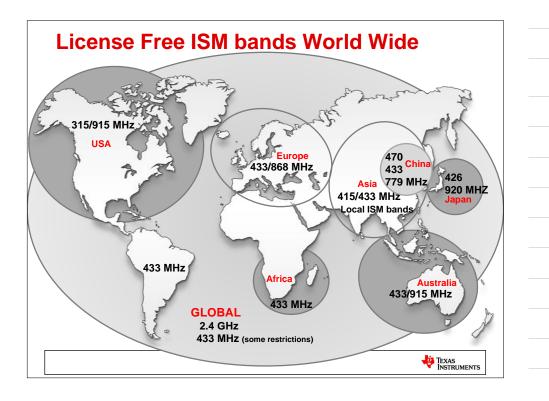
	End Equipment	Solution
SensorTag	Wireless gadgets for Smartphone TAM Y13: 10Mu+ Many products in the market	Focused Product: CC2541 CC256x
	Wi-Fi connected devices TAM Y13: Market in China just starting now	Focused Product: CC3000
0	Smart Energy / Home automation TAM Y13: 50-60M (Smart Meters)	Focused Product: CC110L, CC1100E CC1120
	Wireless Lightning TAM Y13: 2Mu+ Products start to ramp in market	Focused Product: CC2530

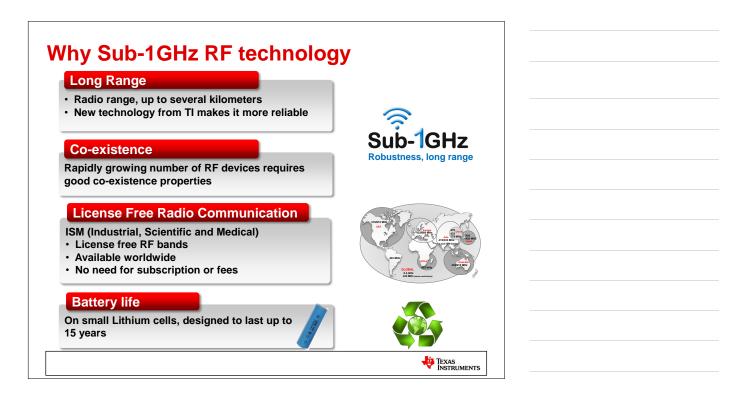
TEXAS INSTRUMENTS

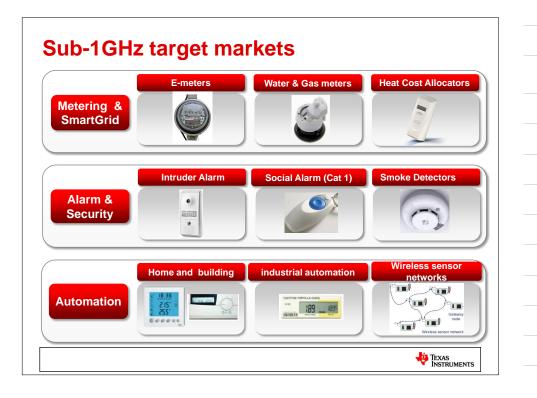


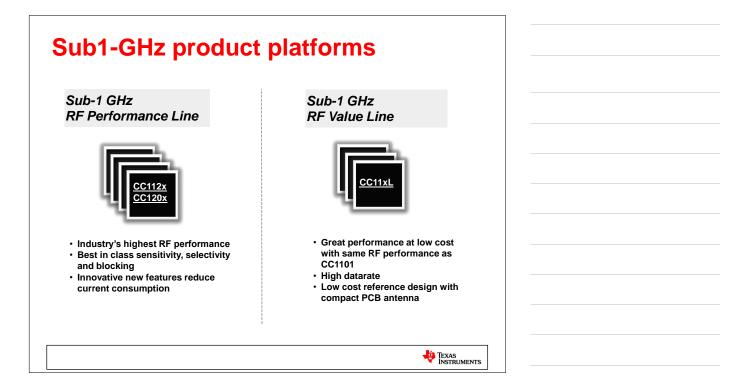


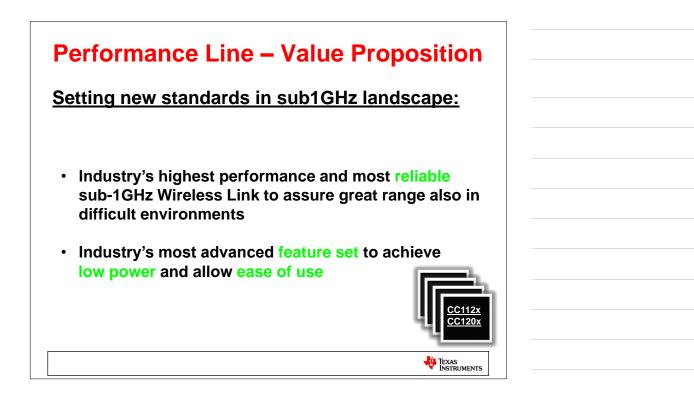

Wifi: Ideal applications for CC3000

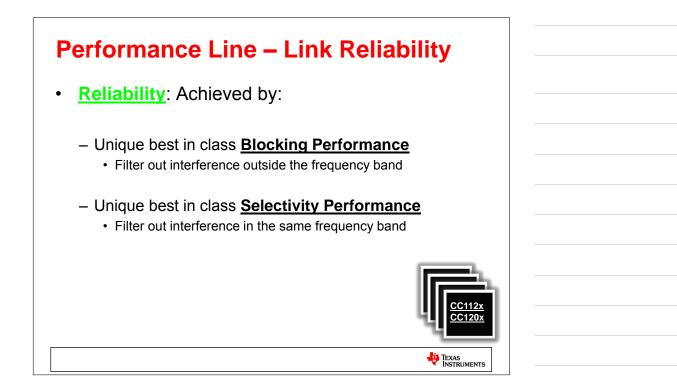

Good Fit	Low Fit	Background
Home	Enterprise	CC3000 focused on Personal Security only
Wall-powered or Battery powered with triggered operation	Battery powered and always Connected	CC3000 supports active and shutdown modes
Sensor and control Audio Low Res Video	High-resolution video	CC3000 throughput 4Mbps - TCP 7Mbps - UDP
		TEXAS INSTRUMENTS

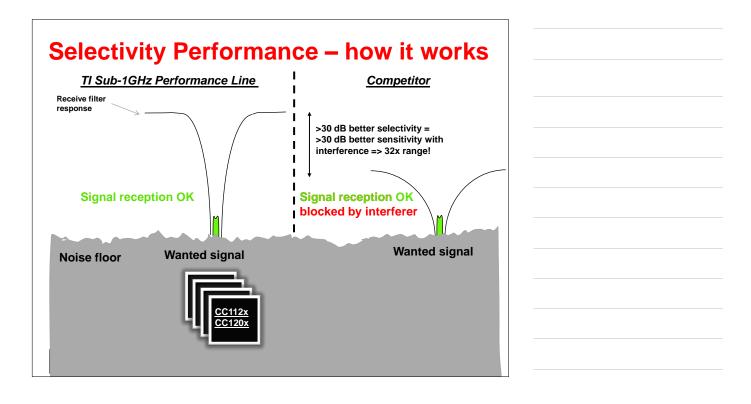


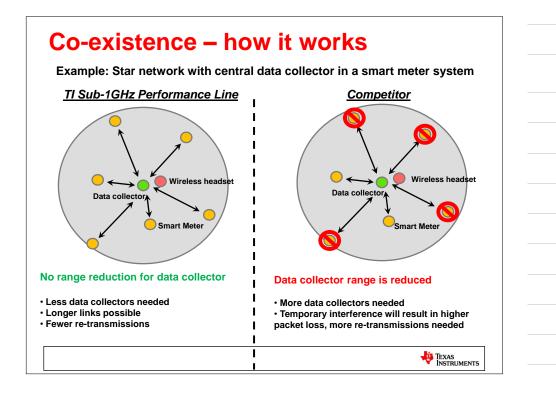


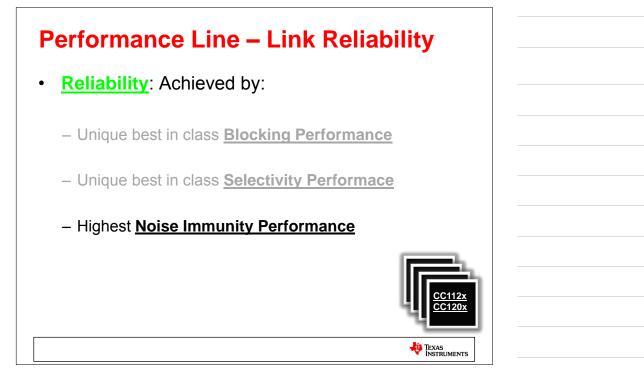




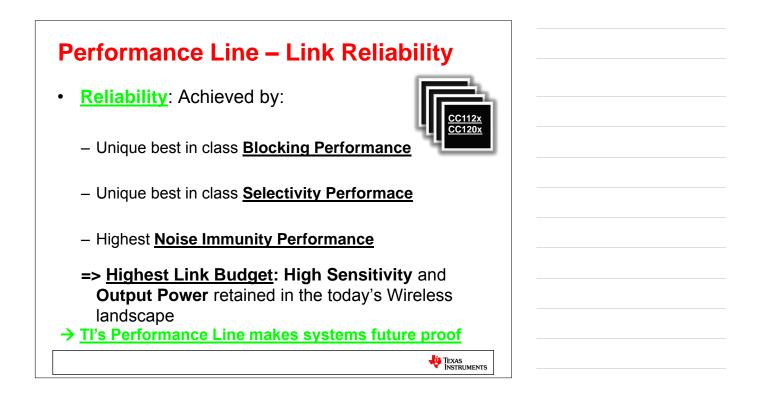


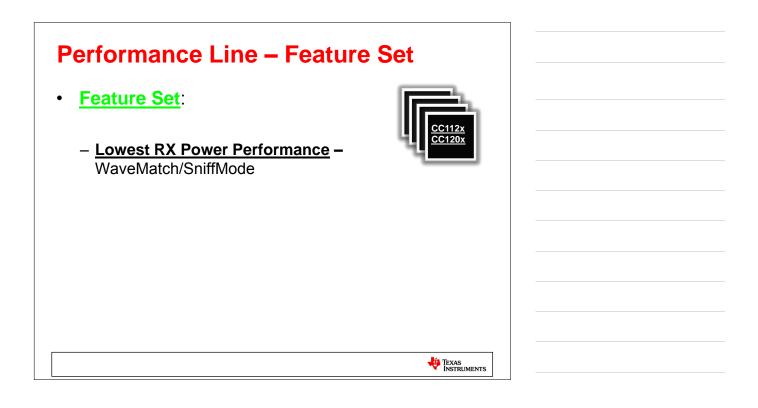




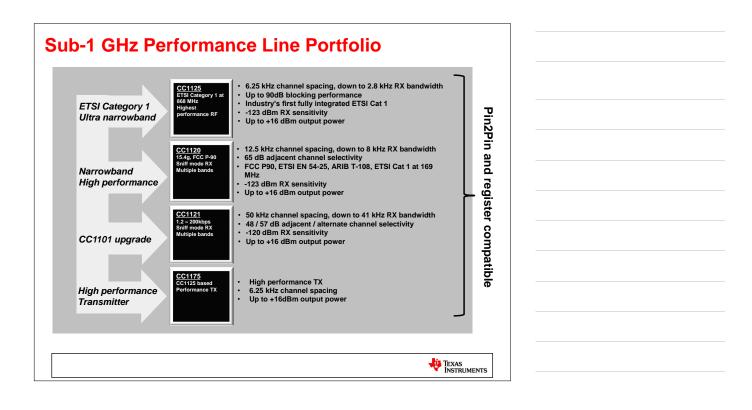


Performance Line – Value Proposition	
 <u>Reliability</u>: - Why? The deployment of Wireless connectivity increases drastically Possible interferers move closer to each other Wireless EcoSystems are evolving with the need to bridge between different technologies and frequency bands 	
→ Performance Line is specifically designed to provide a future proof Wireless Sub-1GHz link to handle the challenge of RF Co-existence and Interference	




Noise Immunity – Traditio	nal Receiver	
 A bit demodulator generates a bit stream and comprogrammed sync word, e.g. '11011', to identify The bit demodulator needs a long preamble to facompensate for frequency offset. This limits the If you input only noise on the bit demodulator, it sequence on the output. Using a 16 bit sync word, it will be a 1/2¹⁶=1/658 sync word will appear in this bit stream, leading less reliable communication and more load on the stream. 	ify the start of a packet ind the bit timing and performance! will produce a bit 536 probability that the to false sync detect =>	
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	1 1 0 1 1 SYNC DETECTED > Data Demodulation Start	
	TEXAS INSTRUMENTS	

Noise Immunity - Wav	eMatch	
 No false triggering of the sync word due given by interferes 	e to Noise	
Ultra high sensitivity, down to -127dBm	at 1.2kbps	
 Extremely quick settling: 0.5 byte pream settling – AGC) including Automatic Free 		
Also usable as a high performance Pre	amble Detector	
	r SYNC DETECTED ➢ Bit Timing Found ➢ Frequency Offset found ➢ Data Demodulation Start	
	TEXAS INSTRUMENTS	


Performance Line – Value Proposition	
Setting new standards in sub1GHz landscape:	
 Industry's highest reliable sub1GHz Wireless Link to assure great range also in difficult environments 	
Industry's most advanced feature set to achieve low power and allow ease of use	
TEXAS INSTRUMENTS	

Performance Line – Value Proposition	
 Feature Set for Low Power and Ease of Use: Long battery life becomes mandatory Increasing battery life goes with lower RF performance NOT with the Performance Line 	
 Highest integration and preprocessing on the RF side off-loads the MCU 	
→ Performance Line is specifically designed to provide a future proof Wireless sub1GHz link to handle battery requirements, future protocols and offloading the application MCU	
TEXAS INSTRUMENTS	

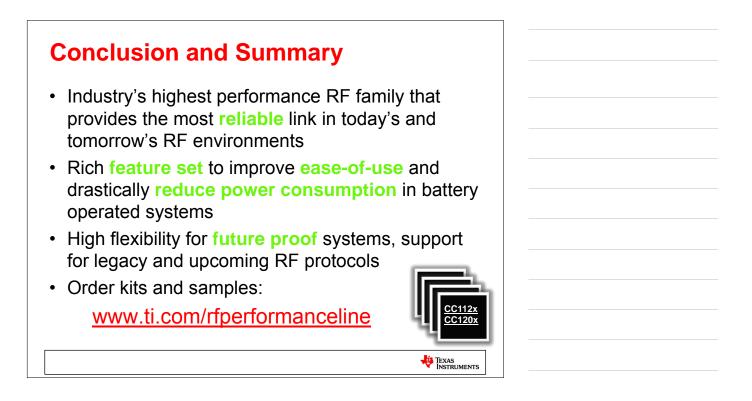
RX Sniff Mode with <3mA RX current In typical RF systems the packet consists of preamble, sync and payload	
 <u>Traditional receiver</u>: Radio must stay in RX continuously to make sure the transmitted packet is received, settling the receiver during the preamble 	
 WaveMatch receiver: The fast settling receiver does not need the long preamble, and can automatically duty cycle RX to greatly reduce average power consumption when searching for packets, without sacrificing RF performance! 	
LOWEST RX current with keeping highest PERFORMANCE	

Performance Line – Feature Set	
 Feature Set: – Lowest RX Power Performance – WaveMatch/SniffMode 	
 Low external BOM while keeping Performance No SAW, no external VCO tank, no calibration during manufacturing needed 	
 Greatest Packet Support Performance IEEE802.15.4g, WMBus, IO HomeControl, KNX-RF, full flexibility on RF parameters to support all legacy protocols 	
→ <u>TI's Performance Line makes systems future proof</u>	
U Texas Instruments	

Performance line feature matrix

	CC1121	CC1201	CC1120	CC1200	CC1125
Narrow band (12.5 / 25 kHz channels)			•	•	•
Up to 200 kbps datarate	•	•	•	•	•
Up to 1 Mbps datarate		•		•	
AES security HW support		•		•	
802.15.4g FSK mandatory mode (50kbps)	•	•	•	•	•
802.15.4g FSK 100 kbps	•	•	•	•	•
802.15.4g FSK all rates		•		•	
802.15.4g HW packet support: DualSync (two concurrent sync words) CRC and Whitening Forward Error Correction (FEC)	•	• •	•	•	•
WMBUS all modes (C, N, S, T)	•	•	•	•	•
WaveMatch and RX SniffMode	•	•	•	•	•
ETSI Category 1 at 868 MHz					•
ETSI Category 1 at 169 MHz			•	•	•

Sub1-GHz long range RF: CC1120 New \$10 development kit for China!

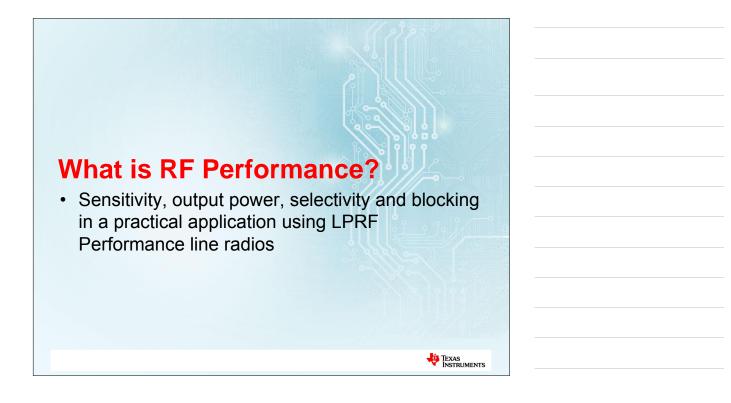

ISM Frequency Bands In China -RF Solution Overview

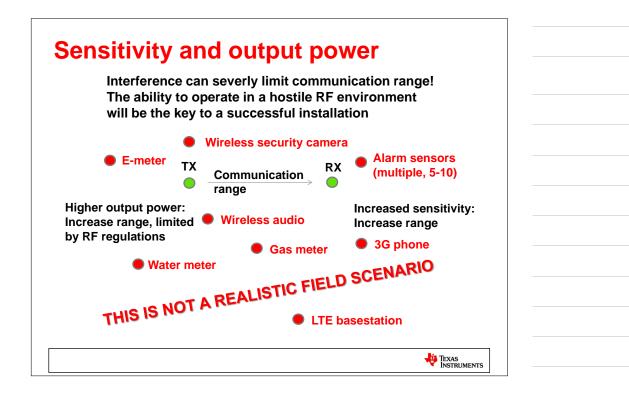
Frequency Band	Transmission Power Limit	Occupied Bandwidth	Equipment Type	TI LPRF Device
314 – 316 MHz	10 mW	≤ 400 kHz	Wireless control	Value Line CC11xL
430 – 434 MHz (note 1)	10 mW	≤ 400 kHz	devices, not to be used for wireless control toys and	CC111x/CC110x CC430F5xxx Performance Line
779 – 787 MHz	10 mW	none	models	CC112x / CC120x
470 – 510 MHz	50 mW	≤ 200 kHz	Metering for sivil usage	CC1100E CC1100E + CC1190 Performance Line CC112x/CC120x (note 2)
ISM band a	around 433 MHz	•	g North America ar er up to 480 MHz of	nd Europe, have an

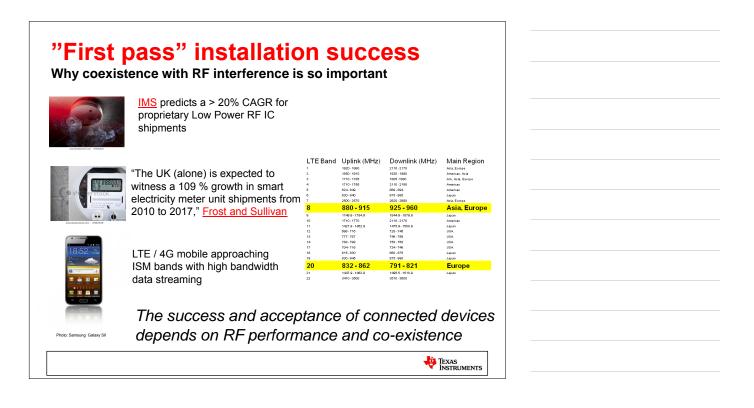
Wireless Connectivity Wiki Read View source View history Go Search Page Discussion s Wireless Connectivity Platforms Translate this page to 🙁 - Česky 📉 Translate Wireless Connectivity Platforms Search Welcome to the Wreless Connectivity with Here you can find information and materials on the wireless solutions that Texas Instruments @has to offer. For information on specific wieless platforms visit their individual wins by clicking the links below in the Platforms section. For further information and support be sure to visit TI's EXE Community @ forums. Wi Fi) Bluetooth[®] DANT ZigBee 3 Links 10052 IPG Ð Overview ato /a braadaat www.ti.com/connectivitywiki TEXAS INSTRUMENTS

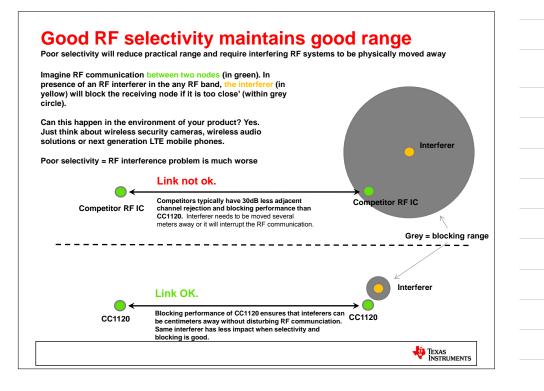
TEXAS INSTRUMENTS

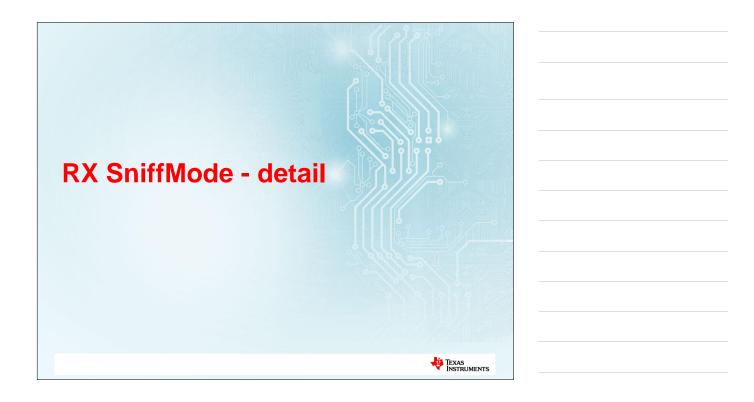
ww	州仪器在线技术支持社区 /w.deyisupport.com /ɛxʌs Iʌstruments				
首页 》:	技术论坛 » 无线连接	坛 🎩 大学 🥼 裧 社会媒	体发表新航		登录 / 注册 私入澄索关键字 投索 系は伊生
32U)	果您有问题需要解答,请点击此链接去发表新有	醕	20.40.67%		技术论坛
无线	£接 存藏 マ 11 BLE 深度培训文档	日期 マ 発后送表 TY 2012-9-8 4.47	查看 ❤ 685	回复 マ 0	• 我想与認念信号 - 放大器 - 放大器 - 取用時時 - 北水出業 - 北水出業 - 北水出業 - 七口 影明 - 七口 影明 - 七口 影明 - 音频
8	CC2530与CC2520的区别	愛最后发表 ren frank 2013-2-26 12:21	47	5	- 耳砂模拟产品 - 其他模拟产品 - 数字信号处理器 (DSP)& ARM® 微处理 器 - CS000 [™] 超低功時 DSP
8	CC2540中断问题	愛 最后发表 momo 2013-2-26 12:03	17	2	- C6000 [™] 单板 - C6000 [™] 单板 - 达芬奇(Davind™) - Stara [™] & C6 Integra [™] DSP+ARM®
8	CC2540设备名称	● 最后发表 Shawn Han1 2013-2-26 8:10	30	2	- 其地DSP & ARM®)产品 → 微分理器 MCU - MSP430 ^{™16} 位相低功耗 MCU - C2000 ^{™ 32} 位架时 MCU
o://w	/ww.deyisupport.com/	question_answer/f/45	5.aspx		- C2000 ** 321230H] MCO

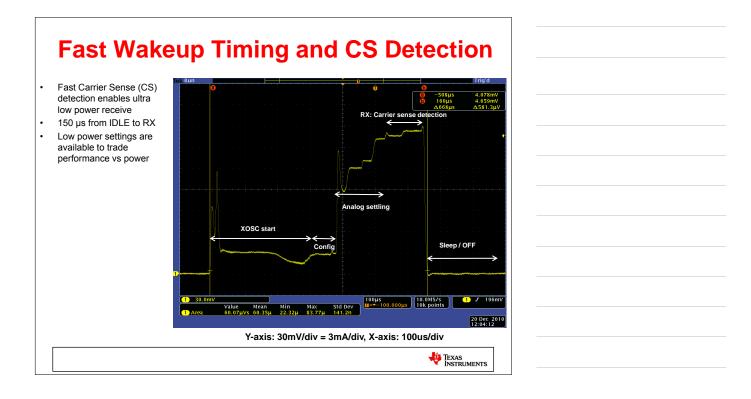


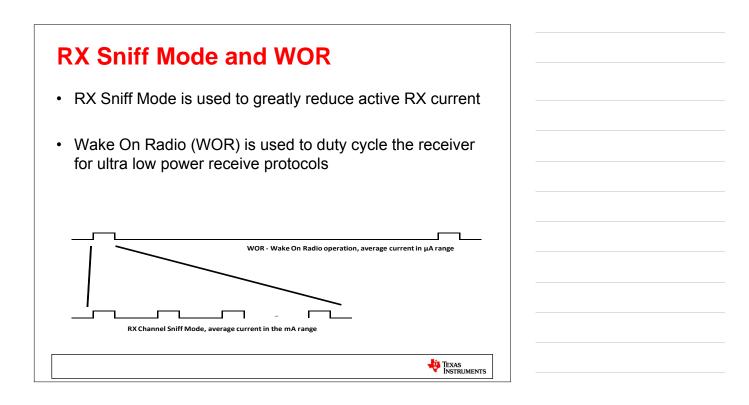





Performance line benefits


Industry leading RF blocking and selectivity:First pass installation success. The RF chip market is growing 30% YoY, and robust RF is the key to communicate reliably in presence of interference => lower field install cost• 65dB adjacent channel rejection at 12.5kHz offset • 90dB blockingThe first fully integrated ETSI Category 1 radio on the market. Significant cost reduction compared to todays discrete solutionsHigh output power (up to +16dBm) and excellent sensitivity (-123dBm @1.2kbps)Long range, 10's of kilometers out-of-the- box with the development kitWaveMatch; Advanced DSP sync detector with high sensitivity and strong noise immunityMore reliable links, no false sync detects in noiseAdvanced RX sniff mode. Quick startup and settling time.<3mA RX sniff mode current consumption. Extended battery life.	Feature	Benefit
excellent sensitivity (-123dBm @1.2kbps)box with the development kitWaveMatch; Advanced DSP sync detector with high sensitivity and strong noise immunityMore reliable links, no false sync detects in noiseAdvanced RX sniff mode. Quick startup<3mA RX sniff mode current	 selectivity: 65dB adjacent channel rejection at 12.5kHz offset 	chip market is growing 30%YoY, and robust RF is the key to communicate reliably in presence of interference => lower field install cost The first fully integrated ETSI Category 1 radio on the market. Significant cost reduction compared to todays discrete
detector with high sensitivity and strong noise immunityin noiseAdvanced RX sniff mode. Quick startup<3mA RX sniff mode current		o o i
	detector with high sensitivity and strong	•
	•	





	-	1/1	1
How RF Sniff Mo	de Works 🔊		
The CC112X receiver requires or frequency offset compensation (A)			
RF Sniff Mode is enabled by usin automatic RX termination based		ith	
 In RF Sniff Mode the fast settling with a longer preamble to run aut 			
 The duty cycling is transparent to performance (sensitivity, selectivity) 	•	he RF	
Average power consumption dep		•	
	le reduces average receive current non z		
		Data (packet	
	Preamble 16 bit sync word	payload)	
1. RX Sniff Mode	Nominal R	K	
		TEXAS INSTRUMENTS	

Antenna Diversity
CC112x and CC120x supports antenna diversity
The diversity function use GPIO to control an external RF switch
 The diversity decision can be based on RSSI / Carrier sense or preamble detect
 Due to the fast settling receiver with WaveMatch architecture, a normal length preamble can be used (2-3 bytes). Competing radio solutions typically require 8 or more bytes of preamble for antenna diversity
 Preamble detector gives a more accurate signal detection than RSSI. The preamble detector uses the high performance WaveMatch feature
TEXAS INSTRUMENTS

PHY support

 Packet automation on CC120x to simplify FW / SW when used with 802.15.4g FSK standard

IEEE 802.15.4g Smart Utility Networks (SUN)

•	A physical layer (PHY) amendment to the existing IEEE 802.15.4 standard
	and only those MAC modifications (to 802.15.4) needed to support its
	implementation

- Mandatory PHY: (Multi Rate) MR-FSK

- Optional PHY's: MR-OFDM and MR-O-QPSK (DSSS)
- Targeting outdoor wireless Smart Utility Networks (SUN)
 - Primarily smart grid wireless networks, expected to be widely used in metering and home automation applications
 - Generally applicable to low power low cost wireless systems
- Operation in any of the regionally available license exempt frequency bands
 Sub-1 GHz, 1.4 GHz and 2.4 GHz frequency bands are included

TEXAS INSTRUMENTS

TEXAS INSTRUMENTS

TI Effort Within IEEE 802.15.4g SUN

- TI has an excellent position and is strongly committed to IEEE 802.15.4
- TI has been actively participating in 802.15.4 since 2003 (Industry's first 802.15.4 Transceiver) and in 802.15.4g since January 2009
- TI is actively participating in 802.15.4g with primarily focus on FSK and OFDM based PHY specifications
- TI will provide high performance and power efficient 802.15.4g compliant • solutions using the MR-FSK and MR-OFDM PHY specifications
- FSK based systems are today widely deployed and well proven in the field
 - The established eco system around FSK ensures good solution availability and low cost TI has extensive experience with FSK based radios and provides a broad product portfolio and a
 - strong roadmap of FSK radio solutions at both sub-1 GHz and 2.4 GHz ISM bands
 - Offering and roadmap includes; RF transceivers, transmitters, system-on-chip devices, network processors and protocol/network SW
- OFDM based solutions will complement FSK based solutions
 - Higher performance and improved spectral efficiency
 - Less complex and lower power than 802.11g and WiMAX _
 - Due to risk of changes / clarifications in the standard, TI has chose to support OFDM initially with DSP SW based solution using I/Q front-end radio

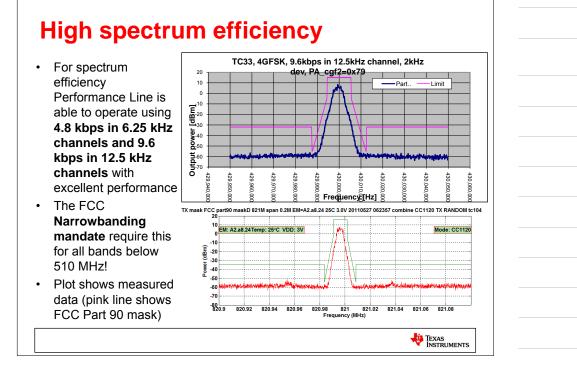
TEXAS INSTRUMENTS	

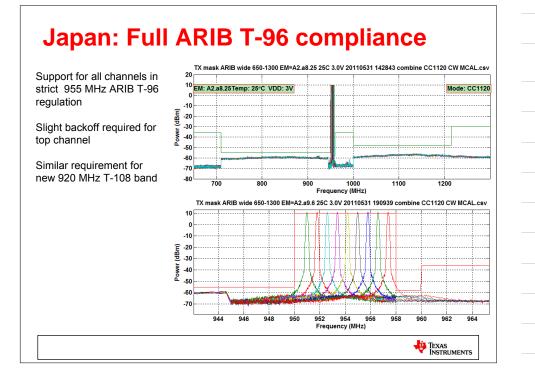
IEEE 802.15.4g support

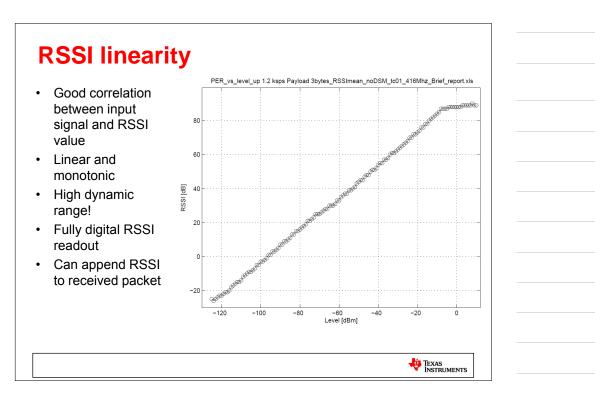
- 15.4g defines a mandatory mode of operation (50 kbps) with a defined • packet structure
- 15.4g also defines a wide set of optional features
- CC120x supports all mandatory features and has extensive support for optional features
- Features supported:
 - Packet header decoding
 - CRC16/32
 - Whitening

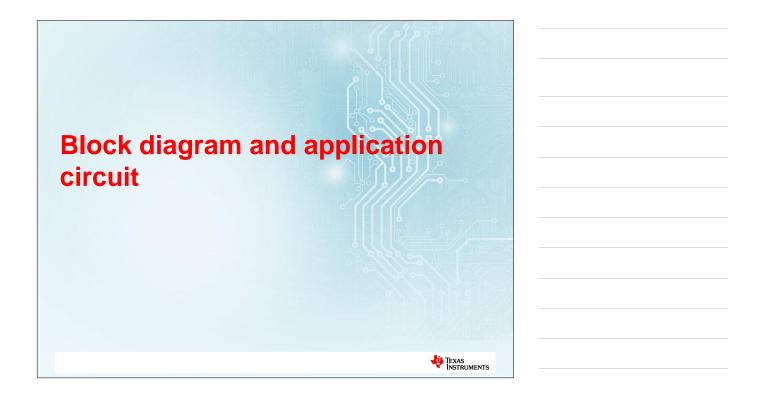
 - _

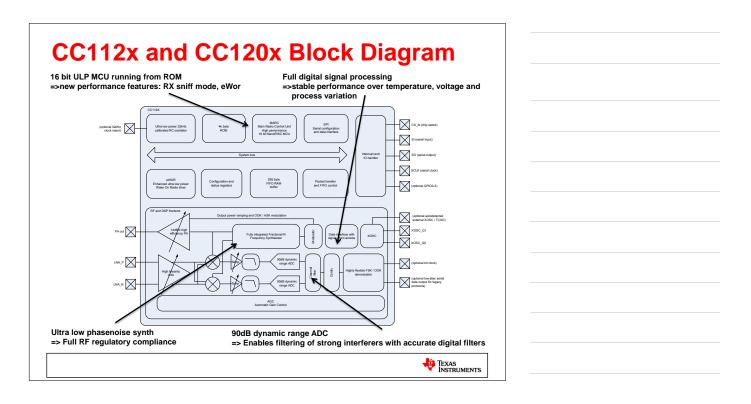
Frame L	ength			\leftarrow	Optional data white	ening>	Legend:
(conť)				~	CRC calculatio	n	Inserted automatically in TX, processed and removed in RX.
	Preamble bits (Programmable)	Start Frame Delimiter	PHRA field	PHRB field	Data field	CRC-32 or CRC16	Unprocessed user data (Except fo
	<8 x 4 bits>		× ⁸ bits	× ⁸ bits×	8 x n bits	→ ^{32 or 16} →	winterning)

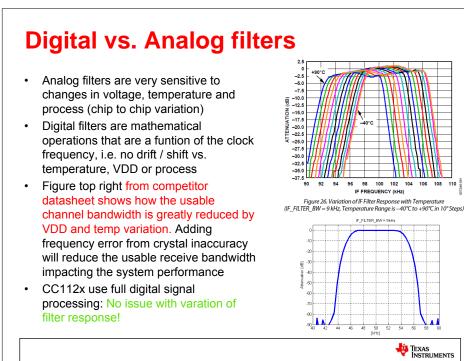

IEEE 802.15.4g support cont'

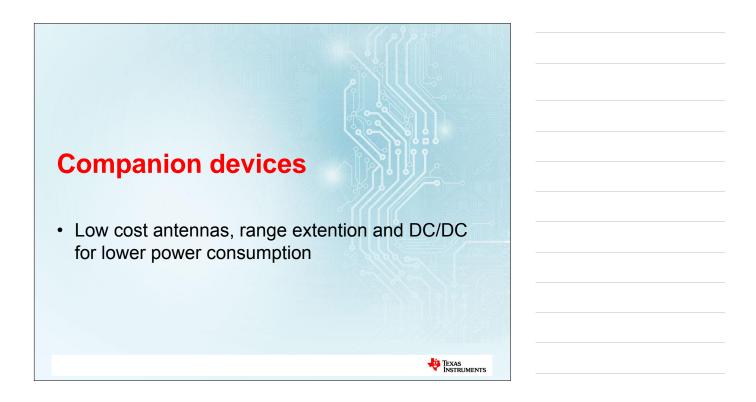

- FEC support with CC112x / CC120x DualSync
 - 15.4g distinguish between FEC / non-FEC packets based on the sync word / SFD
 - CC112x / CC120x can search concurrently for two different 16 bit sync words / SFDs => DualSync
 - For CC120x, based on the detected SFD, FEC is enabled or disabled to allow a system of mixed FEC and non-FEC nodes

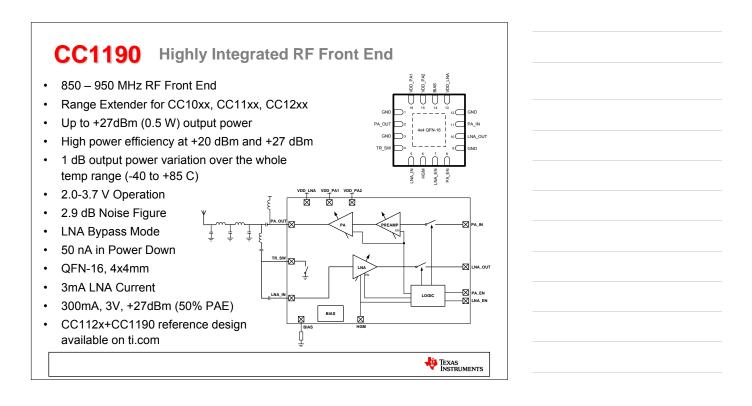

ModeSwitch

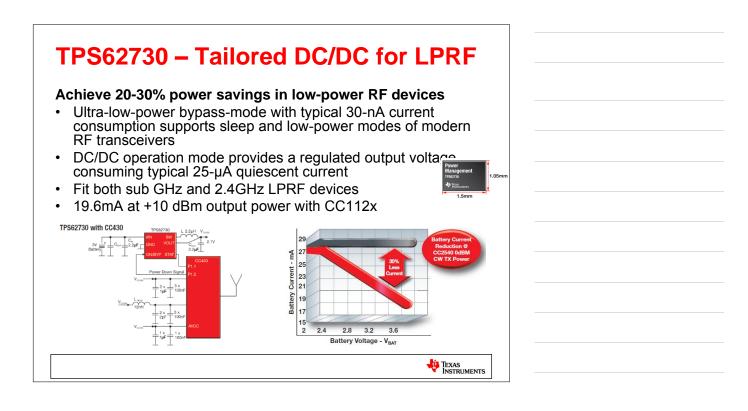

- A bit in the 15.4g header indicates that the next packet will have a different format (different PHY parameters)
- The fast-settling performance line receivers can be re-configured on-the-fly and restarted to support any switch in operation mode

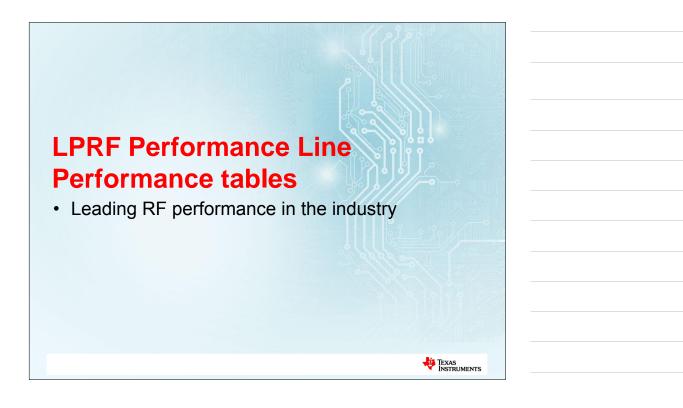

Bit string index	0	1-2	3	4	5-15	Bit string index	0	1-2	3	4-10	11-14	15
Bit mapping	MS	R ₁ -R ₀	FCS	DW	L ₁₀ -L ₀	Bit mapping	MS	M ₁ -M ₀	FEC	As defined in Figure 114	B ₃ -B ₀	PC
Field name	Mode Switch	Reserved	FCS Type	Data Whitening	Frame Length	Field name	Mode Switch	Mode Switch Parameter Entry	New Mode FEC	New Mode	Checksum	Parity Check
											XAS	s





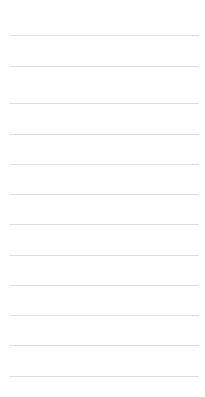






Antenna Evaluation Kit Antenna reference designs (PCB, Chip and Wire antennas) Al low cost antennas and 3 calibration boards. Brequency ranges from 136 MHz to 2.48 GHz. Breadso DN031 Www.ti.com/lit/swra328

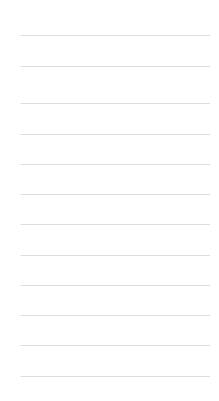
	U		0011	puno		•	
PARAMETER	CC1020	CC1101	CC1121	CC1201	CC1120	CC1200	UNIT
Sensitivity (1.2kbps)	-118	-116	-120	-120	-123	-122	dBm
Max P _{out} (170/4xx/9xx MHz)	10/5	12	16/15/14	16/15/14	16/15/14	16/15/14	dBm
I_{RX} RX Sniff Mode	N.A.	N.A.	3*	3*	3*	3*	mA
I _{RX} Normal Mode / low power mode	19.9	16.0	22 / 17	22 / 17	22 / 17	22 / 17	mA
I _{TX} +10dBm normal / low power mode	27	31	34 / 32	34 / 32	34 / 32	34 / 32	mA
I _{SLEEP}	0.2	0.3	0.3	0.3	0.3	0.3	uA
Voltage Range	2.3 - 3.6	1.8 – 3.6	2.0 - 3.6	2.0 - 3.6	2.0 - 3.6	2.0 - 3.6	V
Package	7x7 QFN32	4x4 QFN20	5x5 QFN32	5x5 QFN32	5x5 QFN32	5x5 QFN32	


RF Performance Comparison #1

* RX Sniff mode significantly reduce the average power consumption by autonomously checking the channel for RF activity and only go to full receive mode when a signal is detected. Full performance is kept in RX Sniff Mode, the power consumption is a trade-off with settling time (preamble length)

> TEXAS INSTRUMENTS

RF Performance Comparison #2


PARAMETER	CC1020	CC1101	CC1121 **	CC1201 ***	CC1120**	CC1200***	UNIT
Adj. Ch. Selectivity	32	28	60	54	64	55	dB
Alt. Ch. Selectivity	41	37	60	54	66	55	dB
Image Rejection Uncalibrated	31	23	60	54	66	53	dB
Blocker Rejection*	50 - 78	62	83	86	89	90	dB
IIP3 (max gain) IIP3 (max gain – 3dB)	-18 -15		>-14 >-8	>-14 >-8	>-14 >-8	>-14 >-8	dBm
Phase noise 10 kHz	-90	-90	-111	-107	-111	-107	dBc/Hz
Phase noise 100 kHz	-110	-92	-116	-108	-116	-108	dBc/Hz
Phase noise 1 MHz	-114	-107	-135	-127	-135	-127	dBc/Hz
*Blocker Rejection is a	10MHz and	above fron	n center freq.	** For 170 M	Hz *** For 40	00 MHz	
						texas Instr	5 RUMENTS

PARAMETER								
Frequency Range	402 - 480 804 - 960	300 - 348 387 - 464 779 - 928 CC1100E: 470 - 510 950 - 960	820 - 960 410 - 480 164 - 192	820 - 960 410 - 480 164 - 192	820 - 960 410 - 480 164 - 192	820 - 960 410 - 480 164 - 192 Sampling* 273 - 320 205 - 240 136 - 170	820 - 960 410 - 480 164 - 192	MHz
Packet Handling	No	YES	YES	YES	YES	YES	YES	
FIFO Size	-	2x64	2x128	2x128	2x128	2x128	2x128	Byte
WOR	No	YES	YES	YES	YES	YES	YES	
MIN PREAMBLE	3	2	0.5	0.5	0.5	0.5	0.5	Byte
MIN Ch BW	12.5	58	41	41	8	3	10	kHz

TEXAS INSTRUMENTS

Regulatory compliance:						
PARAMETER	CC1020	CC1101 / CC1100E	CC1121	CC1201	CC1120	CC1200
ARIB T30	•				•	•
ARIB T67	•				•	•
ARIB T108	•		•	•	•	•
ETSI EN 300-220	•	•	•	•	•	•
FCC Part 15	•	•	•	•	•	•
FCC Part 24	•				•	•
FCC Part 90 (Mask D, E, G, J)					•	•
FCC Part 101					•	•
ETSI EN 54-25	•				•	•
	-					-
						texa Inst

