

Analog to Digital in a Few Simple Steps

A Guide to Designing with SAR ADCs

Miro Oljaca Senior Applications Engineer Texas Instruments Inc Tucson, Arizona USA moljaca@ti.com

SAR ADC's Block Diagram

Equivalent Input Circuit

Sample and Conversion Process

ELECTRICAL CHARACTERISTICS: $V_{DD} = +5V$

At -40°C to +85°C, V_{REF} = +5V, -IN = GND, f_{SAMPLE} = 250kHz, and f_{DCLOCK} = 24 × f_{SAMPLE} , unless otherwise noted.

Sample and Conversion Timing

TIMING INFORMATION

Voltage Ripple on The Input of ADC

Voltage Across Sampling Capacitor

$$V_{CSH}(t) = V_{CSH}(t_0) + [V_{IN} - V_{CSH}(t_0)] \times (1 - e^{-\frac{t}{\tau}})$$

$$\tau = R_{S1} \times C_{SH}$$

Settling Time as a Function of Time Constant

 $V_{IN} - V_{CSH} (t_{AQ}) \le \frac{1}{2} LSB$

 $V_{CSH}(t_{AQ})$ is voltage across the C_{SH} , at the end of the sampling period

 t_{AQ} is acquisition time, the time from the beginning of the sampling period (t_{0}) to the end of the sampling period

$$\frac{1}{2}LSB = \frac{FSR}{2^{N+1}}$$

(LSB = Least Significant Bit, FSR is the full-scale range of the N-Bit converter)

$$t_{AQ} \ge k_1 \times \tau$$
$$k_1 = (N+1) \times \ln(2)$$

Time-Constant-Multiplier (k₁) for SAR ADC

k1 time-constant-multiplie 1/2 LSB accuracy, 1/2 ^{N+1}
6.2
7.6
<u>9.0</u>
10.4
<u>11.8</u>
13.2
14.6

*note – using worst case values: V_{IN} = full-scale voltage or 2^N, V_{SH0} = 0V

SAR ADC

$$R_F \times C_F \leq \frac{t_{AQ}}{(N+1) \cdot \ln(2)}$$

ADC Input With Proper RC Filter

ADC Input With Wrong RC Filter

Op Amp Driving RC Filter

Modified Open-Loop Voltage Gain

Added Pole and Zero

Frequency of added pole

Frequency of added zero

$$f_{PX} = \frac{1}{2\pi \cdot (R_O + R_F) \cdot C_F}$$
$$f_{ZX} = \frac{1}{2\pi \cdot R_F \cdot C_F}$$

Gain of added pole

Gain of added zero

$$G_{PX} = -20 \cdot \log \left[\frac{f_{PX}}{f_U} \right]$$
$$G_{ZX} = G_{PX} - 40 \cdot \log \left[\frac{f_{ZX}}{f_{PX}} \right]$$

Good Design Guideline

Final Circuit

Minimum Acquisition Time and Op Amp's GBW

Calculate time-constant multiplier

$$k = (N+1) \cdot \ln(2)$$

 $\tau \leq \frac{t_{AQ}}{k}$

• Determine minimum time-constant

• Calculate frequency of added zero

• Find Unity Gain Bandwidth

$$f_{ZX} = \frac{1}{2\pi \cdot \tau}$$

$$GBW = 4 \cdot f_{ZX}$$

Minimum Acquisition Time for Different Op Amps

		GBW	fz	т	12 Bit t _{AQ}	16 Bit t _{AQ}
		(MHz)	(MHz)	(ns)	(ns)	(ns)
INA155	Medium Speed, Precision INA	0.55	0.14	1,157	5,672	8,881
INA128	High Precision, 120dB CMRR	1.3	0.33	490	2,400	3,757
INA331	High Bandwidth, Single Supply	5.0	1.25	127	624	977
OPA340	CMOS, 0.0007% THD+N	5.5	1.38	116	567	888
OPA363	1.8V, High CMRR, SHDN	7.0	1.75	91	446	698
OPA2613	Dual VFB, Low Noise	12.5	3.13	51	250	391
OPA627	Ultra-Low THD+N, Wide BW	16.0	4.00	40	195	305
OPA381	Precision High-Speed Amp	18.0	4.50	35	173	271
OPA727	CMOS, e-trim™, Low Noise	20.0	5.00	32	156	244
OPA228	Precision, Low Noise, G ≥ 5	33.0	8.25	19	95	148
OPA350	Precision ADC Driver	38.0	9.50	17	82	129
OPAy365	High-Speed, Zero-Crossover	50.0	12.50	13	62	98
OPA2889	Dual, Low Power, VFB	75.0	18.75	8	42	65
OPA211	36V, Bipolar Precision	80.0	20.00	8	39	61
THS4281	Very Low Power RRIO	80.0	20.00	8	39	61
OPA35 8	CMOS, 3V Operation, SC70	80.0	20.00	8	39	61

Not Good Design Guideline

After selecting ADC and OpAmp

• Determine C_F

 $20 \cdot C_{SH} \le C_F \le 60 \cdot C_{SH}$

• Calculate R_F

$$R_F = \frac{1}{2\pi \cdot C_F \cdot f_{ZX}}$$

Verify value R_F

$$R_F \ge \frac{R_O}{9}$$

Calculate frequency of added pole

$$f_{PX} = \frac{1}{2\pi \cdot (R_F + R_O) \cdot C_F}$$

 Keep added pole and zero less then decade a part

$$f_{PX} \ge \frac{1}{10} f_{ZX}$$

Design by Example

For ADS8326 we have t_{AQ} =750ns, C_{SH} =48pF and N=16.

$$\tau \le \frac{t_{AQ}}{k} = \frac{750ns}{11.78} = 63.65ns$$

$$f_{ZX} = \frac{1}{2\pi \cdot \tau} = \frac{1}{2\pi \cdot 63.65ns} = 2.5MHz$$

$$2 \quad \boxed{GBW \ge 4 \cdot f_{ZX}} = 4 \cdot 2.5MHz = 10MHz$$

3
$$\begin{bmatrix} 20 \cdot C_{SH} \le C_F \le 60 \cdot C_{SH} \Rightarrow 20 \cdot 48 \, pF \le C_F \le 60 \cdot 48 \, pF \Rightarrow \\ 960 \, pF \le C_F \le 2.9 nF \Rightarrow C_F = 1.2 nF \end{bmatrix}$$

ADC and DAC Functions

ADC:

DAC:

 $V_{OUT} = CODE \cdot \frac{V_{REF}}{2^{N}}$

Noise and ENOB of ADC

Signal-to-Noise Ratio and Distortion

$$SINAD(dB) = -20\log\sqrt{10^{\frac{-SNR}{10}} + 10^{\frac{THD}{10}}}$$

 $\frac{\text{Effective Number of Bits}}{ENOB} = \frac{SINAD - 1.76dB}{6.02}$

ENOB = f(SNR, THD)

Noise Sources in SAR ADCs

- Wideband ADC internal circuits noise
- Noise due to aperture jitter
- Quantization noise
- Transition or DNL noise
- Analog input buffer circuit noise
- Reference input voltage noise

Measuring Reference Input Noise

Noise Contribution

Quantization of Reference Noise

- Low noise analog input of 0.09V
 Source of noise is ADC's internal noise.
 - Measured noise is $27\mu V_{RMS}$ or $179\mu V_{PP}$
- Low noise analog input of 4.02V
 - Source of noise is ADC's internal noise and reference input noise.
 - Measured noise is $43 \mu V_{\text{RMS}}$ or $287 \mu V_{\text{PP}}$

Sources of the Noise in REF50xx

Low Pass Filter Shapes the Output Noise Spectrum

Source: Art Kay; OpAmp Noise 2006

REF50xx Noise Test Circuit

Capacitor Equivalent Circuit

- C Capacitance
- ESR Equivalent Series Resistance
- ESL Equivalent Series Inductance
- IR Insulation Resistance

Capacitive Load with ESR

Measured Noise for different BW and LP Filters

 4.9 μV_{RMS} 9,017 μV_{RMS} <u>60.8</u> μV_{RMS} 38.5 μV_{RMS} 39.1 μV_{RMS} 34.5 μV_{RMS}

The capacitor on the output of REF50xx together with internal components will create Low Pass filters.

Filtering Internal Bandgap Reference

Measured Noise with Added Bandgap Filter

Noise	22kHz LP-5P	Measureme 30kHz LP-3P	nt Bandwith 80kHz LP-3P	>500kHz	Units
GND	0.8	1	1.8	4.6	μV _{RMS}
2.2μF (cer)	42.5	47.2	61.2	68.3	μV _{RMS}
2.2μF+1μF	<u>17.5</u>	<u>19.4</u>	<u>22.6</u>	<u>24.5</u>	μV _{RMS}
10μF	34.4	35.6	37.7	44.5	μV _{RMS}
10μF+1μF	<u>14.1</u>	<u>14.4</u>	<u>14.9</u>	<u>16.4</u>	μV _{RMS}
20μF (cer)	34.8	34.9	35.1	35.2	μV _{RMS}
20μF+1μF	<u>14.4</u>	<u>14.4</u>	<u>14.7</u>	<u>15.1</u>	μV _{RMS}

Adding 1µF capacitor on the TRIM pin will reduce noise ~2.5x

REF5040 Output with 10 μ **F** and <10m Ω ESR Capacitor

Frequency Spectrum (32768 Point FFT)

Fs = 131.0720 kHz Fin = 4.000000 Hz

Added RC filter on the Output

Adding RC filter reduce noise from xx to xx

REF5040 Output with added RC Filter

INSTRUMENTS

Fs = 131.0720 kHz Fin = 8.000000 Hz

SAR ADC Capacitive Conversion Network

REF Input With Proper Buffer

REF Input With Wrong Buffer

Voltage-reference circuit with added buffer and output filter

Design by Example

- 1. Use REF5040 and 10 μ F with 0.5 Ω <ESR<1.5 Ω (V_n=39 μ V_{RMS}/261 μ V_{PP})
- 2. Add 1 μ F on the TRIM pin (V_n=16 μ V_{RMS}/138 μ V_{PP})
- 3. Use additional RC Filter (10k Ω /10 μ F) (V_n=2.2 μ V_{RMS}/15 μ V_{PP})
- 4. Buffer output with OPA350 and 10 μ F with 0.2 Ω <ESR (V_n=4.5 μ V_{RMS}/42 μ V_{PP})

References

- 1) Green, Tim, "Operational Amplifier Stability, Part 6 of 15: Capacitance-Load Stability: RISO, High Gain & CF, Noise Gain," Analog Zone, 2005.
- 2) Miro Oljaca, and Baker Bonnie, "Start with the right op amp when driving SAR ADCs," EDN, October 16, 2008,
- 3) Downs, Rick, and Miro Oljaca, "Designing SAR ADC Drive Circuitry, Part I: A Detailed Look at SAR ADC Operation," Analog Zone, 2005.
- 4) Downs, Rick, and Miro Oljaca, "Designing SAR ADC Drive Circuitry, Part II: Input Behavior of SAR ADCs," Analog Zone, 2005.
- 5) Downs, Rick, and Miro Oljaca, "Designing SAR ADC Drive Circuitry, Part III: Designing The Optimal Input Drive Circuit For SAR ADCs," Analog Zone, 2007.
- 6) Baker, Bonnie, and Miro Oljaca, "External components improve SAR-ADC accuracy," EDN, June 7, 2007,
- 7) Miroslav Oljaca, "Understand the Limits of Your ADC Input Circuit Before Starting Conversions," Analog Zone, 2004.

References Cont.

- 8) Art Kay, "Analysis and Measurement of Intrinsic Noise in Op Amp Circuits Part 1 to 8", Analog Zone / En-Genius, 2006-2008
- 9) Oljaca, M., Klein, W., "Converter voltage reference performance improvement secrets", Instrumentation & Measurement Magazine, IEEE, Volume: 12 Issue: 5 October 2009, Page(s): 21-27,
- 10) Bonnie Baker, and Miro Oljaca, "How the voltage reference affects ADC performance, Part 3 of 3", Analog Applications Journal, Texas Instruments, Q4Y09, 2009
- 11) Miro Oljaca, and Bonnie Baker, "How the Voltage Reference Affects your Performance: Part 2 of 3", Analog Applications Journal, Texas Instruments, Q3Y09, July 2009
- 12) Bonnie Baker, and Miro Oljaca, "How the Voltage-reference affects Your Performance: Part 1 of 3",, Analog Applications Journal, Texas Instruments, Q2Y09, 2009
- 13) Miro Oljaca, "Converter Voltage Reference Performance Improvement Secrets" Embedded Systems Conference, Silicon Valley, 2008

Questions?

Thanks for Your Interest in From Analog to Digital: Design In a Few Simple Steps

Miro Oljaca Senior Applications Engineer Texas Instruments Inc Tucson, Arizona USA moljaca@ti.com

